Suppr超能文献

具有多个内部状态的启动子中的噪声与信息传递

Noise and information transmission in promoters with multiple internal States.

作者信息

Rieckh Georg, Tkačik Gašper

机构信息

Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria.

Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria.

出版信息

Biophys J. 2014 Mar 4;106(5):1194-204. doi: 10.1016/j.bpj.2014.01.014.

Abstract

Based on the measurements of noise in gene expression performed during the past decade, it has become customary to think of gene regulation in terms of a two-state model, where the promoter of a gene can stochastically switch between an ON and an OFF state. As experiments are becoming increasingly precise and the deviations from the two-state model start to be observable, we ask about the experimental signatures of complex multistate promoters, as well as the functional consequences of this additional complexity. In detail, we i), extend the calculations for noise in gene expression to promoters described by state transition diagrams with multiple states, ii), systematically compute the experimentally accessible noise characteristics for these complex promoters, and iii), use information theory to evaluate the channel capacities of complex promoter architectures and compare them with the baseline provided by the two-state model. We find that adding internal states to the promoter generically decreases channel capacity, except in certain cases, three of which (cooperativity, dual-role regulation, promoter cycling) we analyze in detail.

摘要

基于过去十年间对基因表达噪声的测量,人们习惯于从双态模型的角度来思考基因调控,即基因的启动子可以在开启和关闭状态之间随机切换。随着实验变得越来越精确,与双态模型的偏差开始变得可观测,我们探讨了复杂多态启动子的实验特征,以及这种额外复杂性的功能后果。具体而言,我们:i)将基因表达噪声的计算扩展到由具有多个状态的状态转移图描述的启动子;ii)系统地计算这些复杂启动子的实验可及噪声特征;iii)使用信息论评估复杂启动子结构的通道容量,并将其与双态模型提供的基线进行比较。我们发现,除了某些情况外,向启动子添加内部状态通常会降低通道容量,我们详细分析了其中三种情况(协同性、双重作用调控、启动子循环)。

相似文献

1
Noise and information transmission in promoters with multiple internal States.
Biophys J. 2014 Mar 4;106(5):1194-204. doi: 10.1016/j.bpj.2014.01.014.
2
Promoter-mediated transcriptional dynamics.
Biophys J. 2014 Jan 21;106(2):479-88. doi: 10.1016/j.bpj.2013.12.011.
3
Precise regulation of gene expression dynamics favors complex promoter architectures.
PLoS Comput Biol. 2009 Jan;5(1):e1000279. doi: 10.1371/journal.pcbi.1000279. Epub 2009 Jan 30.
5
Promoter shape varies across populations and affects promoter evolution and expression noise.
Nat Genet. 2017 Apr;49(4):550-558. doi: 10.1038/ng.3791. Epub 2017 Feb 13.
6
The generation of promoter-mediated transcriptional noise in bacteria.
PLoS Comput Biol. 2008 Jul 11;4(7):e1000109. doi: 10.1371/journal.pcbi.1000109.
8
Programming gene expression with combinatorial promoters.
Mol Syst Biol. 2007;3:145. doi: 10.1038/msb4100187. Epub 2007 Nov 13.
9
Expression noise facilitates the evolution of gene regulation.
Elife. 2015 Jun 17;4:e05856. doi: 10.7554/eLife.05856.
10
Insulators and promoters: closer than we think.
Nat Rev Genet. 2010 Jun;11(6):439-46. doi: 10.1038/nrg2765. Epub 2010 May 5.

引用本文的文献

1
Limits on the computational expressivity of non-equilibrium biophysical processes.
Nat Commun. 2025 Aug 5;16(1):7184. doi: 10.1038/s41467-025-61873-0.
2
Transcriptional bursting: from fundamentals to novel insights.
Biochem Soc Trans. 2024 Aug 28;52(4):1695-1702. doi: 10.1042/BST20231286.
4
Quantifying stimulus-response specificity to probe the functional state of macrophages.
Cell Syst. 2023 Mar 15;14(3):180-195.e5. doi: 10.1016/j.cels.2022.12.012. Epub 2023 Jan 18.
5
Eukaryotic gene regulation at equilibrium, or non?
Curr Opin Syst Biol. 2022 Sep;31. doi: 10.1016/j.coisb.2022.100435. Epub 2022 Oct 20.
6
Quantifying information of intracellular signaling: progress with machine learning.
Rep Prog Phys. 2022 Jul 12;85(8). doi: 10.1088/1361-6633/ac7a4a.
7
Nonequilibrium models of optimal enhancer function.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31614-31622. doi: 10.1073/pnas.2006731117. Epub 2020 Dec 2.
8
Signaling pathways have an inherent need for noise to acquire information.
BMC Bioinformatics. 2020 Oct 16;21(1):462. doi: 10.1186/s12859-020-03778-x.
9
First-principles prediction of the information processing capacity of a simple genetic circuit.
Phys Rev E. 2020 Aug;102(2-1):022404. doi: 10.1103/PhysRevE.102.022404.
10
Information transmission from NFkB signaling dynamics to gene expression.
PLoS Comput Biol. 2020 Aug 14;16(8):e1008011. doi: 10.1371/journal.pcbi.1008011. eCollection 2020 Aug.

本文引用的文献

1
The fitness value of information.
Oikos. 2010 Feb;119(2):219-230. doi: 10.1111/j.1600-0706.2009.17781.x.
2
Positional information, in bits.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16301-8. doi: 10.1073/pnas.1315642110. Epub 2013 Oct 2.
3
Time-dependent information transmission in a model regulatory circuit.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022708. doi: 10.1103/PhysRevE.88.022708. Epub 2013 Aug 12.
4
Principles of adaptive sorting revealed by in silico evolution.
Phys Rev Lett. 2013 May 24;110(21):218102. doi: 10.1103/PhysRevLett.110.218102. Epub 2013 May 21.
6
Regulating the many to benefit the few: role of weak small RNA targets.
Biophys J. 2013 Apr 16;104(8):1773-82. doi: 10.1016/j.bpj.2013.02.020.
7
Promoter sequence determines the relationship between expression level and noise.
PLoS Biol. 2013;11(4):e1001528. doi: 10.1371/journal.pbio.1001528. Epub 2013 Apr 2.
8
Spatial partitioning improves the reliability of biochemical signaling.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5927-32. doi: 10.1073/pnas.1218301110. Epub 2013 Mar 25.
9
Regulation of noise in gene expression.
Annu Rev Biophys. 2013;42:469-91. doi: 10.1146/annurev-biophys-083012-130401. Epub 2013 Mar 21.
10
Cross talk and interference enhance information capacity of a signaling pathway.
Biophys J. 2013 Mar 5;104(5):1170-80. doi: 10.1016/j.bpj.2013.01.033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验