Suppr超能文献

非平衡生物物理过程的计算表达能力限制。

Limits on the computational expressivity of non-equilibrium biophysical processes.

作者信息

Floyd Carlos, Dinner Aaron R, Murugan Arvind, Vaikuntanathan Suriyanarayanan

机构信息

The Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL, USA.

The James Franck Institute, The University of Chicago, Chicago, IL, USA.

出版信息

Nat Commun. 2025 Aug 5;16(1):7184. doi: 10.1038/s41467-025-61873-0.

Abstract

Many biological decision-making tasks require classifying high-dimensional chemical states. The biophysical and computational mechanisms that enable classification remain enigmatic. In this work, using Markov jump processes as an abstraction of general biochemical networks, we reveal several unanticipated and universal limitations on the classification ability of generic biophysical processes. These limits arise from a fundamental non-equilibrium thermodynamic constraint that we have derived. Importantly, we show that these limitations can be overcome using common biochemical mechanisms that we term input multiplicity, examples of which include enzymes acting on multiple targets. Analogous to how increasing depth enhances the expressivity and classification ability of neural networks, our work demonstrates how tuning input multiplicity can potentially enable an exponential increase in a biological system's ability to classify and process information.

摘要

许多生物决策任务需要对高维化学状态进行分类。实现分类的生物物理和计算机制仍然是个谜。在这项工作中,我们将马尔可夫跳跃过程用作一般生化网络的抽象,揭示了通用生物物理过程在分类能力方面的几个意外且普遍的限制。这些限制源于我们推导出的一个基本的非平衡热力学约束。重要的是,我们表明可以使用我们称为输入多样性的常见生化机制来克服这些限制,其示例包括作用于多个靶点的酶。类似于增加深度如何增强神经网络的表现力和分类能力,我们的工作展示了调整输入多样性如何有可能使生物系统的分类和处理信息的能力呈指数级增长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc47/12325794/abe36304a62d/41467_2025_61873_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验