Suppr超能文献

经冠状窦途径被动收紧二尖瓣环的张力:绵羊模型的离体研究。

Tension to passively cinch the mitral annulus through coronary sinus access: an ex vivo study in ovine model.

机构信息

Tissue Mechanics Laboratory Biomedical Engineering Program and Department of Mechanical Engineering University of Connecticut, Storrs, CT 06269, United States.

Department of Mechanical Engineering Texas Tech University, Lubbock, TX 79409, United States.

出版信息

J Biomech. 2014 Apr 11;47(6):1382-8. doi: 10.1016/j.jbiomech.2014.01.044. Epub 2014 Feb 6.

Abstract

INTRODUCTION

The transcatheter mitral valve repair (TMVR) technique utilizes a stent to cinch a segment of the mitral annulus (MA) and reduces mitral regurgitation. The cinching mechanism results in reduction of the septal-lateral distance. However, the mechanism has not been characterized completely. In this study, a method was developed to quantify the relation between cinching tension and MA area in an ex vivo ovine model.

METHOD

The cinching tension was measured from a suture inserted within the coronary sinus (CS) vessel with one end tied to the distal end of the vessel and the other end exited to the CS ostium where it was attached to a force transducer on a linear stage. The cinching tension, MA area, septal-lateral (S-L) and commissure-commissure (C-C) diameters and leakage was simultaneously measured in normal and dilated condition, under a hydrostatic left ventricular pressure of 90 mm Hg.

RESULTS

The MA area was increased up to 22.8% after MA dilation. A mean tension of 2.1 ± 0.5 N reduced the MA area by 21.3 ± 5.6% and S-L diameter by 24.2 ± 5.3%. Thus, leakage was improved by 51.7 ± 16.2% following restoration of normal MA geometry.

CONCLUSION

The cinching tension generated by the suture acts as a compensation force in MA reduction, implying the maximum tension needed to be generated by annuloplasty device to restore normal annular size. The relationship between cinching tension and the corresponding MA geometry will contribute to the development of future TMVR devices and understanding of myocardial contraction function.

摘要

简介

经导管二尖瓣修复(TMVR)技术利用支架收紧二尖瓣环(MA)的一段,从而减少二尖瓣反流。收紧机制导致间隔-侧壁距离减小。然而,该机制尚未完全描述。在这项研究中,开发了一种方法来量化在羊离体模型中收紧张力与 MA 面积之间的关系。

方法

通过插入冠状窦(CS)血管内的缝线测量收紧张力,缝线的一端系在血管的远端,另一端穿出 CS 口并连接到线性台的力传感器上。在左心室压力为 90mmHg 的静水压力下,在正常和扩张条件下同时测量收紧张力、MA 面积、间隔-侧壁(S-L)和瓣环-瓣环(C-C)直径以及漏血量。

结果

MA 扩张后 MA 面积增加了 22.8%。平均 2.1±0.5N 的张力可使 MA 面积减少 21.3±5.6%,S-L 直径减少 24.2±5.3%。因此,MA 几何形状恢复正常后,漏血量改善了 51.7±16.2%。

结论

缝线产生的收紧张力作为 MA 缩小的补偿力,这意味着瓣环成形术装置需要产生的最大张力来恢复正常的环形尺寸。收紧张力与相应 MA 几何形状之间的关系将有助于未来 TMVR 装置的开发和对心肌收缩功能的理解。

相似文献

1
Tension to passively cinch the mitral annulus through coronary sinus access: an ex vivo study in ovine model.
J Biomech. 2014 Apr 11;47(6):1382-8. doi: 10.1016/j.jbiomech.2014.01.044. Epub 2014 Feb 6.
2
Does septal-lateral annular cinching work for chronic ischemic mitral regurgitation?
J Thorac Cardiovasc Surg. 2004 Mar;127(3):654-63. doi: 10.1016/j.jtcvs.2003.09.036.
4
Septal-lateral annular cinching abolishes acute ischemic mitral regurgitation.
J Thorac Cardiovasc Surg. 2002 May;123(5):881-8. doi: 10.1067/mtc.2002.122296.
5
In-vivo motion of mitral valve annuloplasty devices.
J Heart Valve Dis. 2008 Jan;17(1):110-7; discussion 117-8.
7
Do annuloplasty rings designed to treat ischemic/functional mitral regurgitation alter left-ventricular dimensions in the acutely ischemic ovine heart?
J Thorac Cardiovasc Surg. 2019 Oct;158(4):1058-1068. doi: 10.1016/j.jtcvs.2018.12.077. Epub 2019 Jan 11.
8
Effects of paracommissural septal-lateral annular cinching on acute ischemic mitral regurgitation.
Circulation. 2004 Sep 14;110(11 Suppl 1):II79-84. doi: 10.1161/01.CIR.0000138975.05902.a5.
9
Annular or subvalvular approach to chronic ischemic mitral regurgitation?
J Thorac Cardiovasc Surg. 2005 Jun;129(6):1266-75. doi: 10.1016/j.jtcvs.2005.01.021.
10
Effect of local annular interventions on annular and left ventricular geometry.
Eur J Cardiothorac Surg. 2008 Jun;33(6):1049-54. doi: 10.1016/j.ejcts.2008.03.040. Epub 2008 Apr 28.

引用本文的文献

1
Repairable ex vivo model of functional and degenerative mitral regurgitation.
Eur J Cardiothorac Surg. 2023 Nov 1;64(5). doi: 10.1093/ejcts/ezad371.
2
Image-Guided Targeted Mitral Valve Tethering with Chordal Encircling Snares as a Preclinical Model of Secondary Mitral Regurgitation.
J Cardiovasc Transl Res. 2022 Jun;15(3):653-665. doi: 10.1007/s12265-021-10177-x. Epub 2021 Oct 7.
3
Ex Vivo Model of Functional Mitral Regurgitation Using Deer Hearts.
J Cardiovasc Transl Res. 2021 Jun;14(3):513-524. doi: 10.1007/s12265-020-10071-y. Epub 2020 Sep 21.
4
Effects of Cinching Force on the Tricuspid Annulus: A Species Comparison.
J Cardiovasc Dis Diagn. 2017;5(4). doi: 10.4172/2329-9517.1000283. Epub 2017 Jun 16.
5
The characteristics of a porcine mitral regurgitation model.
Exp Anim. 2018 Nov 1;67(4):463-477. doi: 10.1538/expanim.18-0045. Epub 2018 May 22.
6
How Local Annular Force and Collagen Density Govern Mitral Annuloplasty Ring Dehiscence Risk.
Ann Thorac Surg. 2016 Aug;102(2):518-26. doi: 10.1016/j.athoracsur.2016.01.107. Epub 2016 Apr 28.

本文引用的文献

1
Material properties of aged human mitral valve leaflets.
J Biomed Mater Res A. 2014 Aug;102(8):2692-703. doi: 10.1002/jbm.a.34939. Epub 2013 Sep 17.
2
Mitral valve annular downsizing forces: implications for annuloplasty device development.
J Thorac Cardiovasc Surg. 2014 Jul;148(1):83-9. doi: 10.1016/j.jtcvs.2013.07.045. Epub 2013 Sep 12.
3
Mechanics of healthy and functionally diseased mitral valves: a critical review.
J Biomech Eng. 2013 Feb;135(2):021007. doi: 10.1115/1.4023238.
4
Contractile mitral annular forces are reduced with ischemic mitral regurgitation.
J Thorac Cardiovasc Surg. 2013 Aug;146(2):422-8. doi: 10.1016/j.jtcvs.2012.10.006. Epub 2012 Oct 27.
5
Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans.
Ann Biomed Eng. 2013 Jan;41(1):142-53. doi: 10.1007/s10439-012-0620-6. Epub 2012 Jul 18.
6
Dynamic assessment of mitral annular force profile in an ovine model.
Ann Thorac Surg. 2012 Jul;94(1):59-65. doi: 10.1016/j.athoracsur.2012.02.074. Epub 2012 May 22.
7
In-vivo transducer to measure dynamic mitral annular forces.
J Biomech. 2012 May 11;45(8):1514-6. doi: 10.1016/j.jbiomech.2012.03.009. Epub 2012 Apr 5.
8
Augmented mitral valve leaflet area decreases leaflet stress: a finite element simulation.
Ann Thorac Surg. 2012 Apr;93(4):1141-5. doi: 10.1016/j.athoracsur.2012.01.069. Epub 2012 Mar 6.
9
10
Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound.
J Biomech. 2012 Mar 15;45(5):903-7. doi: 10.1016/j.jbiomech.2011.11.033. Epub 2012 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验