Suppr超能文献

瓣叶面积增加减少瓣叶应力:有限元模拟。

Augmented mitral valve leaflet area decreases leaflet stress: a finite element simulation.

机构信息

Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, Pennsylvania, USA.

出版信息

Ann Thorac Surg. 2012 Apr;93(4):1141-5. doi: 10.1016/j.athoracsur.2012.01.069. Epub 2012 Mar 6.

Abstract

BACKGROUND

Using human mitral valve (MV) models derived from three-dimensional echocardiography, finite element analysis was used to predict mechanical leaflet and chordal stress. Subsequently, valve geometries were altered to examine the effects on stresses of the following: (1) varying coaptation area; (2) varying noncoapted leaflet tissue area; and (3) varying interleaflet coefficient of friction (μ).

METHODS

Three human MV models were loaded with a transvalvular pressure of 80 mm Hg using finite element analysis. Initially leaflet coaptation was set to 10%, 50%, or 100% of actual coaptation length to test the influence of coaptation length on stress distribution. Next, leaflet surface areas were augmented by 1% overall and by 2% in the noncoapted "belly" region to test the influence of increased leaflet billowing without changing the gross geometry of the MV. Finally, the coefficient of friction between the coapted leaflets was set to μ = 0, 0.05, or 0.3, to assess the influence of friction on MV function.

RESULTS

Leaflet coaptation length did not affect stress distribution in either the coapted or noncoapted leaflet regions; peak leaflet stress was 0.36 ± 0.17 MPa at 100%, 0.35 ± 0.14 MPa at 50%, and 0.35 ± 0.15 MPa at 10% coaptation lengths (p = 0.85). Similarly, coaptation length did not affect peak chordal tension (p = 0.74). Increasing the noncoapted leaflet area decreased the peak valvular stresses by 5 ± 2% (p = 0.02). Varying the coefficient of friction between leaflets did not alter leaflet or chordal stress distribution (p = 0.18).

CONCLUSIONS

Redundant MV leaflet tissue reduces mechanical stress on the noncoapted leaflets; the extent of coaptation or frictional interleaflet interaction does not independently influence leaflet stresses. Repair techniques that increase or preserve noncoapted leaflet area may decrease mechanical stresses and thereby enhance repair durability.

摘要

背景

利用从三维超声心动图获得的人二尖瓣(MV)模型,通过有限元分析来预测机械瓣叶和腱索的应力。随后,改变瓣叶几何形状,检查以下因素对应力的影响:(1)改变交界区面积;(2)改变非交界区瓣叶组织面积;和(3)改变瓣叶间摩擦系数(μ)。

方法

使用有限元分析对三个 MV 模型施加 80mmHg 的跨瓣压。最初,瓣叶交界区设置为实际交界区长的 10%、50%或 100%,以测试交界区长对应力分布的影响。接下来,整体增加瓣叶表面积 1%,非交界区“腹部”增加 2%,以测试在不改变 MV 总体几何形状的情况下瓣叶膨胀增加对瓣叶的影响。最后,将瓣叶间的摩擦系数设置为μ=0、0.05 或 0.3,以评估摩擦对 MV 功能的影响。

结果

瓣叶交界区长度均不影响交界区或非交界区瓣叶的应力分布;交界区瓣叶的峰值瓣叶应力在 100%时为 0.36±0.17MPa,在 50%时为 0.35±0.14MPa,在 10%时为 0.35±0.15MPa(p=0.85)。同样,交界区长度也不影响峰值腱索张力(p=0.74)。增加非交界区瓣叶面积可使瓣叶峰值应力降低 5±2%(p=0.02)。改变瓣叶间的摩擦系数不会改变瓣叶或腱索的应力分布(p=0.18)。

结论

MV 瓣叶冗余组织减少了非交界区瓣叶的机械应力;交界区的范围或瓣叶间的摩擦相互作用不会独立影响瓣叶的应力。增加或保留非交界区瓣叶面积的修复技术可能会降低机械应力,从而提高修复耐久性。

相似文献

引用本文的文献

3
Computational mitral valve evaluation and potential clinical applications.二尖瓣的计算机评估及潜在临床应用
Ann Biomed Eng. 2015 Jun;43(6):1348-62. doi: 10.1007/s10439-014-1094-5. Epub 2014 Aug 19.
4
Computational modeling of cardiac valve function and intervention.心脏瓣膜功能与干预的计算建模
Annu Rev Biomed Eng. 2014 Jul 11;16:53-76. doi: 10.1146/annurev-bioeng-071813-104517. Epub 2014 Apr 16.
5
Applications of computational modeling in cardiac surgery.计算建模在心脏外科手术中的应用。
J Card Surg. 2014 May;29(3):293-302. doi: 10.1111/jocs.12332. Epub 2014 Apr 7.
8
Material properties of aged human mitral valve leaflets.老年人类二尖瓣小叶的材料特性。
J Biomed Mater Res A. 2014 Aug;102(8):2692-703. doi: 10.1002/jbm.a.34939. Epub 2013 Sep 17.

本文引用的文献

4
A novel approach to in vivo mitral valve stress analysis.一种新的活体二尖瓣应力分析方法。
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1790-4. doi: 10.1152/ajpheart.00370.2010. Epub 2010 Oct 15.
9
State of the art: degenerative mitral valve disease.最新技术水平:退行性二尖瓣疾病
Heart Lung Circ. 2009 Oct;18(5):319-29. doi: 10.1016/j.hlc.2009.02.005. Epub 2009 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验