Suppr超能文献

采用多元曲线分辨交替最小二乘法在全二维气相色谱/质谱检测中解析大麻共洗脱化合物

Resolution of co-eluting compounds of Cannabis Sativa in comprehensive two-dimensional gas chromatography/mass spectrometry detection with Multivariate Curve Resolution-Alternating Least Squares.

作者信息

Omar Jone, Olivares Maitane, Amigo José Manuel, Etxebarria Nestor

机构信息

Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, PO Box 644, Bilbao 48080, Basque Country Spain.

Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, PO Box 644, Bilbao 48080, Basque Country Spain.

出版信息

Talanta. 2014 Apr;121:273-80. doi: 10.1016/j.talanta.2013.12.044. Epub 2014 Jan 9.

Abstract

Comprehensive Two Dimensional Gas Chromatography - Mass Spectrometry (GC × GC/qMS) analysis of Cannabis sativa extracts shows a high complexity due to the large variety of terpenes and cannabinoids and to the fact that the complete resolution of the peaks is not straightforwardly achieved. In order to support the resolution of the co-eluted peaks in the sesquiterpene and the cannabinoid chromatographic region the combination of Multivariate Curve Resolution and Alternating Least Squares algorithms was satisfactorily applied. As a result, four co-eluting areas were totally resolved in the sesquiterpene region and one in the cannabinoid region in different samples of Cannabis sativa. The comparison of the mass spectral profiles obtained for each resolved peak with theoretical mass spectra allowed the identification of some of the co-eluted peaks. Finally, the classification of the studied samples was achieved based on the relative concentrations of the resolved peaks.

摘要

对大麻提取物进行全二维气相色谱-质谱联用(GC×GC/qMS)分析发现,由于萜类化合物和大麻素种类繁多,且峰的完全分离并非易事,因此其成分具有高度复杂性。为了辅助分离倍半萜和大麻素色谱区域中共流出的峰,多变量曲线分辨和交替最小二乘法算法的组合得到了令人满意的应用。结果,在大麻的不同样品中,倍半萜区域的四个共流出区域和大麻素区域的一个共流出区域得到了完全分离。将每个分离峰获得的质谱图与理论质谱图进行比较,从而鉴定出一些共流出峰。最后,根据分离峰的相对浓度对所研究的样品进行了分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验