IEEE J Biomed Health Inform. 2014 Mar;18(2):606-17. doi: 10.1109/JBHI.2013.2279335.
This paper proposes a new blind end-member and abundance extraction (BEAE) method for multispectral fluorescence lifetime imaging microscopy (m-FLIM) data. The chemometrical analysis relies on an iterative estimation of the fluorescence decay end-members and their abundances. The proposed method is based on a linear mixture model with positivity and sum-to-one restrictions on the abundances and end-members to compensate for signature variability. The synthesis procedure depends on a quadratic optimization problem, which is solved by an alternating least-squares structure over convex sets. The BEAE strategy only assumes that the number of components in the analyzed sample is known a spriori. The proposed method is first validated by using synthetic m-FLIM datasets at 15, 20, and 25 dB signal-to-noise ratios. The samples simulate the mixed response of tissue containing multiple fluorescent intensity decays. Furthermore, the results were also validated with six m-FLIM datasets from fresh postmortem human coronary atherosclerotic plaques. A quantitative evaluation of the BEAE was made against two popular techniques: minimum volume constrained nonnegative matrix factorization (MVC-NMF) and multivariate curve resolution-alternating least-squares (MCR-ALS). Our proposed method (BEAE) was able to provide more accurate estimations of the end-members: 0.32% minimum relative error and 13.82% worst-case scenario, despite different initial conditions in the iterative optimization procedure and noise effect. Meanwhile, MVC-NMF and MCR-ALS presented more variability in estimating the end-members: 0.35% and 0.34% for minimum errors and 15.31% and 13.25% in the worst-case scenarios, respectively. This tendency was also maintained for the abundances, where BEAE obtained 0.05 as the minimum absolute error and 0.12 in the worst-case scenario; MCR-ALS and MVC-NMF achieved 0.04 and 0.06 for the minimum absolute errors, and 0.15 and 0.17 under the worst-case conditions, respectively. In addition, the average computation time was evaluated for the synthetic datasets, where MVC-NMF achieved the fastest time, followed by BEAE and finally MCR-ALS. Consequently, BEAE improved MVC-NMF in convergence to a local optimal solution and robustness against signal variability, and it is roughly 3.6 time faster than MCR-ALS.
本文提出了一种新的盲端元与丰度提取(BEAE)方法,用于多光谱荧光寿命成像显微镜(m-FLIM)数据。该化学计量分析依赖于荧光衰减端元及其丰度的迭代估计。所提出的方法基于具有正性和丰度和端元和一限制的线性混合模型,以补偿信号变化。合成过程取决于二次优化问题,该问题通过凸集上的交替最小二乘结构求解。BEAE 策略仅假设分析样本中的组件数量事先已知。所提出的方法首先通过在 15、20 和 25dB 信噪比下使用合成 m-FLIM 数据集进行验证。这些样本模拟了含有多个荧光强度衰减的组织的混合响应。此外,还使用来自新鲜的人冠状动脉粥样硬化斑块的六个 m-FLIM 数据集验证了结果。针对两种流行技术:最小体积约束非负矩阵分解(MVC-NMF)和多变量曲线分辨率交替最小二乘法(MCR-ALS),对 BEAE 进行了定量评估。我们提出的方法(BEAE)能够更准确地估计端元:最小相对误差为 0.32%,最坏情况下为 13.82%,尽管迭代优化过程中的初始条件不同且存在噪声影响。同时,MVC-NMF 和 MCR-ALS 在估计端元时表现出更大的变异性:最小误差分别为 0.35%和 0.34%,最坏情况分别为 15.31%和 13.25%。这种趋势在丰度上也得到了维持,其中 BEAE 获得的最小绝对误差为 0.05,最坏情况下为 0.12;MCR-ALS 和 MVC-NMF 分别实现了 0.04 和 0.06 的最小绝对误差,以及 0.15 和 0.17 的最坏情况条件。此外,还评估了合成数据集的平均计算时间,其中 MVC-NMF 实现了最快的时间,其次是 BEAE,最后是 MCR-ALS。因此,BEAE 改善了 MVC-NMF 对局部最优解的收敛性和对信号变化的鲁棒性,比 MCR-ALS 快约 3.6 倍。