Gutierrez-Navarro Omar, Campos-Delgado Daniel U, Arce-Santana Edgar R, Maitland Kristen C, Cheng Shuna, Jabbour Joey, Malik Bilal, Cuenca Rodrigo, Jo Javier A
Opt Express. 2014 May 19;22(10):12255-72. doi: 10.1364/OE.22.012255.
Multispectral fluorescence lifetime imaging (m-FLIM) can potentially allow identifying the endogenous fluorophores present in biological tissue. Quantitative description of such data requires estimating the number of components in the sample, their characteristic fluorescent decays, and their relative contributions or abundances. Unfortunately, this inverse problem usually requires prior knowledge about the data, which is seldom available in biomedical applications. This work presents a new methodology to estimate the number of potential endogenous fluorophores present in biological tissue samples from time-domain m-FLIM data. Furthermore, a completely blind linear unmixing algorithm is proposed. The method was validated using both synthetic and experimental m-FLIM data. The experimental m-FLIM data include in-vivo measurements from healthy and cancerous hamster cheek-pouch epithelial tissue, and ex-vivo measurements from human coronary atherosclerotic plaques. The analysis of m-FLIM data from in-vivo hamster oral mucosa identified healthy from precancerous lesions, based on the relative concentration of their characteristic fluorophores. The algorithm also provided a better description of atherosclerotic plaques in term of their endogenous fluorophores. These results demonstrate the potential of this methodology to provide quantitative description of tissue biochemical composition.
多光谱荧光寿命成像(m-FLIM)有潜力识别生物组织中存在的内源性荧光团。对此类数据进行定量描述需要估计样本中的成分数量、它们的特征荧光衰减以及它们的相对贡献或丰度。不幸的是,这个反问题通常需要关于数据的先验知识,而这在生物医学应用中很少能得到。这项工作提出了一种新方法,用于从时域m-FLIM数据估计生物组织样本中潜在内源性荧光团的数量。此外,还提出了一种完全盲线性解混算法。该方法使用合成和实验性m-FLIM数据进行了验证。实验性m-FLIM数据包括来自健康和癌性仓鼠颊囊上皮组织的体内测量数据,以及来自人类冠状动脉粥样硬化斑块的体外测量数据。基于其特征荧光团的相对浓度,对来自体内仓鼠口腔黏膜的m-FLIM数据进行分析,可区分健康病变和癌前病变。该算法还能更好地描述动脉粥样硬化斑块中的内源性荧光团。这些结果证明了该方法在提供组织生化成分定量描述方面的潜力。