Suppr超能文献

用于多光谱荧光寿命成像(FLIM)数据定量分析的荧光端元数量估计。

Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data.

作者信息

Gutierrez-Navarro Omar, Campos-Delgado Daniel U, Arce-Santana Edgar R, Maitland Kristen C, Cheng Shuna, Jabbour Joey, Malik Bilal, Cuenca Rodrigo, Jo Javier A

出版信息

Opt Express. 2014 May 19;22(10):12255-72. doi: 10.1364/OE.22.012255.

Abstract

Multispectral fluorescence lifetime imaging (m-FLIM) can potentially allow identifying the endogenous fluorophores present in biological tissue. Quantitative description of such data requires estimating the number of components in the sample, their characteristic fluorescent decays, and their relative contributions or abundances. Unfortunately, this inverse problem usually requires prior knowledge about the data, which is seldom available in biomedical applications. This work presents a new methodology to estimate the number of potential endogenous fluorophores present in biological tissue samples from time-domain m-FLIM data. Furthermore, a completely blind linear unmixing algorithm is proposed. The method was validated using both synthetic and experimental m-FLIM data. The experimental m-FLIM data include in-vivo measurements from healthy and cancerous hamster cheek-pouch epithelial tissue, and ex-vivo measurements from human coronary atherosclerotic plaques. The analysis of m-FLIM data from in-vivo hamster oral mucosa identified healthy from precancerous lesions, based on the relative concentration of their characteristic fluorophores. The algorithm also provided a better description of atherosclerotic plaques in term of their endogenous fluorophores. These results demonstrate the potential of this methodology to provide quantitative description of tissue biochemical composition.

摘要

多光谱荧光寿命成像(m-FLIM)有潜力识别生物组织中存在的内源性荧光团。对此类数据进行定量描述需要估计样本中的成分数量、它们的特征荧光衰减以及它们的相对贡献或丰度。不幸的是,这个反问题通常需要关于数据的先验知识,而这在生物医学应用中很少能得到。这项工作提出了一种新方法,用于从时域m-FLIM数据估计生物组织样本中潜在内源性荧光团的数量。此外,还提出了一种完全盲线性解混算法。该方法使用合成和实验性m-FLIM数据进行了验证。实验性m-FLIM数据包括来自健康和癌性仓鼠颊囊上皮组织的体内测量数据,以及来自人类冠状动脉粥样硬化斑块的体外测量数据。基于其特征荧光团的相对浓度,对来自体内仓鼠口腔黏膜的m-FLIM数据进行分析,可区分健康病变和癌前病变。该算法还能更好地描述动脉粥样硬化斑块中的内源性荧光团。这些结果证明了该方法在提供组织生化成分定量描述方面的潜力。

相似文献

2
Blind end-member and abundance extraction for multispectral fluorescence lifetime imaging microscopy data.
IEEE J Biomed Health Inform. 2014 Mar;18(2):606-17. doi: 10.1109/JBHI.2013.2279335.
3
Blind deconvolution estimation of fluorescence measurements through quadratic programming.
J Biomed Opt. 2015 Jul;20(7):075010. doi: 10.1117/1.JBO.20.7.075010.
4
A new method to estimate abundances of multiple components using multi-spectral fluorescence lifetime imaging microscopy.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1081-4. doi: 10.1109/EMBC.2012.6346122.
5
A fully constrained optimization method for time-resolved multispectral fluorescence lifetime imaging microscopy data unmixing.
IEEE Trans Biomed Eng. 2013 Jun;60(6):1711-20. doi: 10.1109/TBME.2013.2241431. Epub 2013 Jan 21.
7
8
Quadratic blind linear unmixing: A graphical user interface for tissue characterization.
Comput Methods Programs Biomed. 2016 Feb;124:148-60. doi: 10.1016/j.cmpb.2015.10.016. Epub 2015 Nov 10.
9
Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy.
Atherosclerosis. 2012 Feb;220(2):394-401. doi: 10.1016/j.atherosclerosis.2011.10.034. Epub 2011 Nov 15.
10
Label-Free Characterization of Atherosclerotic Plaques Via High-Resolution Multispectral Fluorescence Lifetime Imaging Microscopy.
Arterioscler Thromb Vasc Biol. 2023 Jul;43(7):1295-1307. doi: 10.1161/ATVBAHA.123.319339. Epub 2023 May 18.

引用本文的文献

1
Enhanced fluorescence lifetime imaging microscopy denoising via principal component analysis.
bioRxiv. 2025 Mar 2:2025.02.26.640419. doi: 10.1101/2025.02.26.640419.
2
Blind deconvolution estimation by multi-exponential models and alternated least squares approximations: Free-form and sparse approach.
PLoS One. 2021 Mar 18;16(3):e0248301. doi: 10.1371/journal.pone.0248301. eCollection 2021.
3
Extended Blind End-member and Abundance Extraction for Biomedical Imaging Applications.
IEEE Access. 2019;7:178539-178552. doi: 10.1109/ACCESS.2019.2958985. Epub 2019 Dec 12.
4
Quadratic blind linear unmixing: A graphical user interface for tissue characterization.
Comput Methods Programs Biomed. 2016 Feb;124:148-60. doi: 10.1016/j.cmpb.2015.10.016. Epub 2015 Nov 10.
5
Deconvolution of fluorescence lifetime imaging microscopy by a library of exponentials.
Opt Express. 2015 Sep 7;23(18):23748-67. doi: 10.1364/OE.23.023748.
6
Blind deconvolution estimation of fluorescence measurements through quadratic programming.
J Biomed Opt. 2015 Jul;20(7):075010. doi: 10.1117/1.JBO.20.7.075010.
7
Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy.
Biomed Opt Express. 2015 May 13;6(6):2088-105. doi: 10.1364/BOE.6.002088. eCollection 2015 Jun 1.

本文引用的文献

1
Blind end-member and abundance extraction for multispectral fluorescence lifetime imaging microscopy data.
IEEE J Biomed Health Inform. 2014 Mar;18(2):606-17. doi: 10.1109/JBHI.2013.2279335.
3
A fully constrained optimization method for time-resolved multispectral fluorescence lifetime imaging microscopy data unmixing.
IEEE Trans Biomed Eng. 2013 Jun;60(6):1711-20. doi: 10.1109/TBME.2013.2241431. Epub 2013 Jan 21.
4
Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy.
Atherosclerosis. 2012 Feb;220(2):394-401. doi: 10.1016/j.atherosclerosis.2011.10.034. Epub 2011 Nov 15.
5
Automated analysis of fluorescence lifetime imaging microscopy (FLIM) data based on the Laguerre deconvolution method.
IEEE Trans Biomed Eng. 2011 Jan;58(1):172-81. doi: 10.1109/TBME.2010.2084086. Epub 2010 Oct 7.
6
In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer.
IEEE Trans Biomed Eng. 2010 Oct;57(10):2596-9. doi: 10.1109/TBME.2010.2060485. Epub 2010 Jul 23.
7
Fluorescence lifetime in cardiovascular diagnostics.
J Biomed Opt. 2010 Jan-Feb;15(1):011106. doi: 10.1117/1.3327279.
8
In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique.
J Biomed Opt. 2009 Nov-Dec;14(6):064011. doi: 10.1117/1.3258838.
9
Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin.
Br J Dermatol. 2008 Jul;159(1):152-61. doi: 10.1111/j.1365-2133.2008.08577.x. Epub 2008 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验