Suppr超能文献

光谱计数排名的互相关以验证定量蛋白质组测量结果。

Cross-correlation of spectral count ranking to validate quantitative proteome measurements.

作者信息

Kannaste Olli, Suomi Tomi, Salmi Jussi, Uusipaikka Esa, Nevalainen Olli, Corthals Garry L

机构信息

Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , 20520 Turku, Finland.

出版信息

J Proteome Res. 2014 Apr 4;13(4):1957-68. doi: 10.1021/pr401096z. Epub 2014 Mar 26.

Abstract

The measurement of change in biological systems through protein quantification is a central theme in modern biosciences and medicine. Label-free MS-based methods have greatly increased the ease and throughput in performing this task. Spectral counting is one such method that uses detected MS2 peptide fragmentation ions as a measure of the protein amount. The method is straightforward to use and has gained widespread interest. Additionally reports on new statistical methods for analyzing spectral count data appear at regular intervals, but a systematic evaluation of these is rarely seen. In this work, we studied how similar the results are from different spectral count data analysis methods, given the same biological input data. For this, we chose the algorithms Beta Binomial, PLGEM, QSpec, and PepC to analyze three biological data sets of varying complexity. For analyzing the capability of the methods to detect differences in protein abundance, we also performed controlled experiments by spiking a mixture of 48 human proteins in varying concentrations into a yeast protein digest to mimic biological fold changes. In general, the agreement of the analysis methods was not particularly good on the proteome-wide scale, as considerable differences were found between the different algorithms. However, we observed good agreements between the methods for the top abundance changed proteins, indicating that for a smaller fraction of the proteome changes are measurable, and the methods may be used as valuable tools in the discovery-validation pipeline when applying a cross-validation approach as described here. Performance ranking of the algorithms using samples of known composition showed PLGEM to be superior, followed by Beta Binomial, PepC, and QSpec. Similarly, the normalized versions of the same method, when available, generally outperformed the standard ones. Statistical detection of protein abundance differences was strongly influenced by the number of spectra acquired for the protein and, correspondingly, its molecular mass.

摘要

通过蛋白质定量来测量生物系统中的变化是现代生物科学和医学的核心主题。基于无标记质谱的方法极大地提高了执行这项任务的便捷性和通量。光谱计数就是这样一种方法,它将检测到的MS2肽段碎裂离子用作蛋白质含量的度量。该方法使用简便,已引起广泛关注。此外,关于分析光谱计数数据的新统计方法的报告定期出现,但很少见到对这些方法的系统评估。在这项工作中,我们研究了在给定相同生物输入数据的情况下,不同光谱计数数据分析方法的结果有多相似。为此,我们选择了Beta Binomial、PLGEM、QSpec和PepC算法来分析三个复杂度不同的生物数据集。为了分析这些方法检测蛋白质丰度差异的能力,我们还进行了对照实验,将不同浓度的48种人类蛋白质混合物添加到酵母蛋白消化物中,以模拟生物学倍数变化。总体而言,在蛋白质组范围内,分析方法之间的一致性不是特别好,因为不同算法之间存在相当大的差异。然而,我们观察到在丰度变化最大的蛋白质方面,这些方法之间有很好的一致性,这表明对于蛋白质组中较小的一部分变化是可测量的,并且当采用此处所述的交叉验证方法时,这些方法可作为发现-验证流程中的有价值工具。使用已知组成样本对算法进行性能排名显示PLGEM最为出色,其次是Beta Binomial、PepC和QSpec。同样,相同方法的归一化版本(如果可用)通常优于标准版本。蛋白质丰度差异的统计检测受到为该蛋白质获取的光谱数量及其相应分子量的强烈影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验