Suppr超能文献

亚砷酸盐的氧化由亚硝酸根和硝酸根的 UV 光解引发。

Arsenite oxidation initiated by the UV photolysis of nitrite and nitrate.

机构信息

School of Environmental Science and Engineering/Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang 790-784, Republic of Korea.

出版信息

Environ Sci Technol. 2014 Apr 1;48(7):4030-7. doi: 10.1021/es500001q. Epub 2014 Mar 21.

Abstract

This study demonstrates that the production of reactive oxidizing species (e.g., hydroxyl radical (•OH)) during the photolysis of nitrite (NO2(-)) or nitrate (NO3(-)) leads to the oxidative conversion of arsenite (As(III)) to arsenate (As(V)). While the direct UV photolytic oxidation of As(III) was absent, nitrite (20 or 200 μM) addition markedly accelerated the oxidation of As(III) under UV irradiation (λ > 295 nm), which implies a role of NO2(-) as a photosensitizer for As(III) oxidation. Nitrate-mediated photooxidation of As(III) revealed an initial lag phase during which NO3(-) is converted into NO2(-). UV-Photosensitized oxidation of As(III) was kinetically enhanced under acidic pH condition where nitrous acid (HNO2) with a high quantum yield for •OH production is a predominant form of nitrite. On the other hand, alkaline pH that favors the photoinduced transformation of NO3(-) to NO2(-) significantly facilitated the catalytic reduction/oxidation cycling, which enabled the complete oxidation of As(III) at the condition of [As(III)]/[NO2(-)] ≫ 1 and markedly accelerated NO3(-)-sensitized oxidation of As(III). The presence of O2 and N2O as electron scavengers enhanced the photochemical dissociation of NO2(-) via intermolecular electron transfer, initiating the oxidative As(III) conversion route probably involving NO2• and superoxide radical anion (O2•(-)) as alternative oxidants. The outdoor experiment demonstrated the capability of NO2(-) for the photosensitized production of oxidizing species and the subsequent oxidation of As(III) into As(V) under solar irradiation.

摘要

本研究表明,亚硝酸盐(NO2(-))或硝酸盐(NO3(-))在光解过程中产生的活性氧化物质(例如,羟基自由基(•OH))会导致亚砷酸盐(As(III))氧化为砷酸盐(As(V))。虽然不存在 As(III)的直接紫外光解氧化,但亚硝酸盐(20 或 200 μM)的添加在紫外光照射下(λ > 295nm)显著加速了 As(III)的氧化,这意味着 NO2(-)作为 As(III)氧化的光敏剂发挥作用。硝酸盐介导的 As(III)光氧化揭示了一个初始滞后阶段,在此期间,NO3(-)被转化为 NO2(-)。在酸性 pH 条件下,亚硝酸(HNO2)具有较高的•OH 生成量子产率,是亚硝酸的主要形式,亚硝酸盐的光敏氧化动力学得到增强。另一方面,碱性 pH 有利于 NO3(-)光诱导转化为 NO2(-),这显著促进了催化还原/氧化循环,使得在 [As(III)]/[NO2(-)] ≫ 1 的条件下完全氧化 As(III),并显著加速了 NO3(-)敏化氧化 As(III)。O2 和 N2O 作为电子捕获剂的存在通过分子间电子转移增强了 NO2(-)的光化学离解,启动了氧化 As(III)的转化途径,可能涉及 NO2•和超氧自由基阴离子(O2•(-))作为替代氧化剂。户外实验表明,NO2(-)有能力在太阳辐射下光敏产生氧化物质,并随后将 As(III)氧化为 As(V)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验