Suppr超能文献

使用2H多量子滤波核磁共振光谱研究水与胶原蛋白的相互作用,以深入了解组织中双量子滤波信号的来源。

Investigating water interactions with collagen using 2H multiple quantum filtered NMR spectroscopy to provide insights into the source of double quantum filtered signal in tissue.

作者信息

Vanderschee Cassidy R, Ooms Kristopher J

机构信息

Department of Chemistry, The King's University College , 9125 50th Street, Edmonton, Alberta, T6B 2H3, Canada.

出版信息

J Phys Chem B. 2014 Apr 3;118(13):3491-7. doi: 10.1021/jp409543p. Epub 2014 Mar 24.

Abstract

In an effort to provide insight into the molecular origins of the (2)H double quantum filtered (DQF) NMR signal observed in connective tissue, specifically spinal disc tissue, (2)H multiple quantum filtered (MQF) NMR spectroscopy is used to study the structure and dynamics of D2O in collagen as a function of hydration. Residual quadrupolar coupling constants are measured and decrease from 3500 to 20 Hz while T2 relaxation times increase from 0.65 to 20 ms as hydration increases. Analysis of the data indicates that the quadrupolar coupling and T2 relaxation arises when water molecules spend time in restricted environments. The residual quadrupolar coupling is influenced almost exclusively by the most restricted water sites, the clefts of the triple helices not exposed on the surface of the fibrils, while the T2 relaxation has secondary contributions from less restricted water environments. The magnitudes of the measured values are consistent with results from DQF NMR studies of spinal disc tissue, supporting the assertion that water binding to collagen is a major contributor to the DQF NMR signal observed in spinal disc tissue.

摘要

为了深入了解在结缔组织(特别是椎间盘组织)中观察到的(2)H双量子滤波(DQF)核磁共振信号的分子起源,采用(2)H多量子滤波(MQF)核磁共振光谱来研究胶原中D2O的结构和动力学随水合作用的变化。测量了残余四极耦合常数,其值随着水合作用的增加从3500 Hz降至20 Hz,而T2弛豫时间则从0.65 ms增加到20 ms。数据分析表明,当水分子处于受限环境中时会产生四极耦合和T2弛豫。残余四极耦合几乎完全受最受限的水位点(即原纤维表面未暴露的三螺旋裂隙)的影响,而T2弛豫则有来自限制较少的水环境的次要贡献。测量值的大小与椎间盘组织的DQF核磁共振研究结果一致,支持了水与胶原的结合是在椎间盘组织中观察到的DQF核磁共振信号的主要贡献因素这一论断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验