Suppr超能文献

Exploring the topography of the stress-modified energy landscapes of mechanosensitive molecules.

作者信息

Konda Sai Sriharsha M, Avdoshenko Stanislav M, Makarov Dmitrii E

机构信息

Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.

Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA.

出版信息

J Chem Phys. 2014 Mar 14;140(10):104114. doi: 10.1063/1.4867500.

Abstract

We propose a method for computing the activation barrier for chemical reactions involving molecules subjected to mechanical stress. The method avoids reactant and transition-state saddle optimizations at every force by, instead, solving the differential equations governing the force dependence of the critical points (i.e., minima and saddles) on the system's potential energy surface (PES). As a result, only zero-force geometry optimization (or, more generally, optimization performed at a single force value) is required by the method. In many cases, minima and transition-state saddles only exist within a range of forces and disappear beyond a certain critical point. Our method identifies such force-induced instabilities as points at which one of the Hessian eigenvalues vanishes. We elucidate the nature of those instabilities as fold and cusp catastrophes, where two or three critical points on the force-modified PES coalesce, and provide a classification of various physically distinct instability scenarios, each illustrated with a concrete chemical example.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验