Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA.
Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA.
Eur Urol. 2014 Aug;66(2):371-8. doi: 10.1016/j.eururo.2014.02.055. Epub 2014 Mar 4.
Traditional evaluation of the learning curve (LC) of an operation has been retrospective. Furthermore, LC analysis does not permit patient safety monitoring.
To prospectively monitor patient safety during the learning phase of robotic kidney transplantation (RKT) and determine when it could be considered learned using the techniques of statistical process control (SPC).
DESIGN, SETTING AND PARTICIPANTS: From January through May 2013, 41 patients with end-stage renal disease underwent RKT with regional hypothermia at one of two tertiary referral centers adopting RKT. Transplant recipients were classified into three groups based on the robotic training and kidney transplant experience of the surgeons: group 1, robot trained with limited kidney transplant experience (n=7); group 2, robot trained and kidney transplant experienced (n=20); and group 3, kidney transplant experienced with limited robot training (n=14).
We employed prospective monitoring using SPC techniques, including cumulative summation (CUSUM) and Shewhart control charts, to perform LC analysis and patient safety monitoring, respectively.
Outcomes assessed included post-transplant graft function and measures of surgical process (anastomotic and ischemic times). CUSUM and Shewhart control charts are time trend analytic techniques that allow comparative assessment of outcomes following a new intervention (RKT) relative to those achieved with established techniques (open kidney transplant; target value) in a prospective fashion.
CUSUM analysis revealed an initial learning phase for group 3, whereas groups 1 and 2 had no to minimal learning time. The learning phase for group 3 varied depending on the parameter assessed. Shewhart control charts demonstrated no compromise in functional outcomes for groups 1 and 2. Graft function was compromised in one patient in group 3 (p<0.05) secondary to reasons unrelated to RKT. In multivariable analysis, robot training was significantly associated with improved task-completion times (p<0.01). Graft function was not adversely affected by either the lack of robotic training (p=0.22) or kidney transplant experience (p=0.72).
The LC and patient safety of a new surgical technique can be assessed prospectively using CUSUM and Shewhart control chart analytic techniques. These methods allow determination of the duration of mentorship and identification of adverse events in a timely manner. A new operation can be considered learned when outcomes achieved with the new intervention are at par with outcomes following established techniques.
Statistical process control techniques allowed for robust, objective, and prospective monitoring of robotic kidney transplantation and can similarly be applied to other new interventions during the introduction and adoption phase.
传统的手术学习曲线(LC)评估是回顾性的。此外,LC 分析不允许监测患者安全性。
前瞻性监测机器人肾移植(RKT)学习阶段的患者安全性,并使用统计过程控制(SPC)技术确定何时可以认为已经掌握。
设计、地点和参与者:2013 年 1 月至 5 月,在两家三级转诊中心中的一家,采用区域低温技术对 41 例终末期肾病患者进行了 RKT。根据外科医生的机器人培训和肾脏移植经验,将移植受者分为三组:组 1,机器人培训经验有限(n=7);组 2,机器人培训经验丰富(n=20);组 3,肾脏移植经验有限(n=14)。
我们采用前瞻性监测,使用 SPC 技术,包括累积和(CUSUM)和休哈特控制图,分别进行 LC 分析和患者安全性监测。
评估的结果包括移植后移植物功能和手术过程(吻合和缺血时间)的措施。CUSUM 和休哈特控制图是时间趋势分析技术,允许在新干预措施(RKT)后与既定技术(开放肾脏移植;目标值)相比,以前瞻性方式比较评估结果。
CUSUM 分析显示组 3 存在初始学习阶段,而组 1 和 2 没有学习时间或学习时间很短。组 3 的学习阶段取决于评估的参数。休哈特控制图显示,组 1 和 2 的功能结果没有受到影响。由于与 RKT 无关的原因,组 3 的一名患者的移植物功能受损(p<0.05)。在多变量分析中,机器人培训与任务完成时间的缩短显著相关(p<0.01)。机器人培训(p=0.22)或肾脏移植经验(p=0.72)均不影响移植物功能。
使用 CUSUM 和休哈特控制图分析技术,可以前瞻性地评估新手术技术的 LC 和患者安全性。这些方法允许及时确定指导的持续时间和确定不良事件。当新干预措施的结果与既定技术的结果相当时,可以认为新手术已经掌握。
统计过程控制技术允许对机器人肾移植进行稳健、客观和前瞻性监测,也可在引入和采用阶段类似地应用于其他新干预措施。