Suppr超能文献

N,N'-偶氮双多硝基二唑的结构与性能的理论研究

Theoretical investigation on the structure and performance of N, N'-azobis-polynitrodiazoles.

作者信息

Jing Mei, Li Huarong, Wang Jun, Shu Yuanjie, Zhang Xiaoyu, Ma Qing, Huang Yigang

机构信息

Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China.

出版信息

J Mol Model. 2014 Apr;20(4):2155. doi: 10.1007/s00894-014-2155-2. Epub 2014 Mar 16.

Abstract

Six novel high energy density compounds of N, N'-azobis-polynitrodiazoles were designed. Their optimized geometric and electronic structures, band gaps, and heats of formation were explored at B3LYP/aug-cc-pVDZ level of density functional theory (DFT). Detonation properties were predicted by Kamlet-Jacobs equations. Results show that the designed compounds have high densities (1.80 to 1.84 g · cm⁻³) and excellent detonation performance (D 8.51 to 9.02 km · s⁻¹, P 32.16 to 36.58 GPa). In addition, the bond dissociation energies of C-NO₂ bonds were found to range from 223.59 to 240.46 kJ · mol⁻¹. All of them appear to be potential explosives compared with the well known ones, 1,3,5-trinitro-1,3,5-triazine (RDX, 8.75 km · s⁻¹, 34.70 GPa) and octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetraazocane (HMX, 8.96 km · s⁻¹, 35.96 GPa), especially R3 (8.98 km · s⁻¹, 36.19 GPa) and R6 (9.02 km · s⁻¹, 36.58 GPa). Finally, the position and number of nitro groups in the N, N'-azobis-polynitrodiazoles determine the heat of formation, stability, sensitivity, density, and detonation performance of these compounds.

摘要

设计了六种新型的N,N'-偶氮双多硝基二唑高能密度化合物。在密度泛函理论(DFT)的B3LYP/aug-cc-pVDZ水平上探索了它们优化的几何和电子结构、带隙及生成热。通过Kamlet-Jacobs方程预测爆轰性能。结果表明,所设计的化合物具有高密度(1.80至1.84 g·cm⁻³)和优异的爆轰性能(D为8.51至9.02 km·s⁻¹,P为32.16至36.58 GPa)。此外,发现C-NO₂键的键解离能范围为223.59至240.46 kJ·mol⁻¹。与知名的1,3,5-三硝基-1,3,5-三嗪(RDX,8.75 km·s⁻¹,34.70 GPa)和八氢-1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷(HMX,8.96 km·s⁻¹,35.96 GPa)相比,它们似乎都是潜在的炸药,尤其是R3(8.98 km·s⁻¹,36.19 GPa)和R6(9.02 km·s⁻¹,36.58 GPa)。最后,N,N'-偶氮双多硝基二唑中硝基的位置和数量决定了这些化合物 的生成热、稳定性、感度、密度和爆轰性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验