Suppr超能文献

绑定池:视觉工作记忆中不同项目的共享神经资源模型。

The binding pool: a model of shared neural resources for distinct items in visual working memory.

作者信息

Swan Garrett, Wyble Brad

机构信息

Psychology Department, Penn State University, State College, PA, USA,

出版信息

Atten Percept Psychophys. 2014 Oct;76(7):2136-57. doi: 10.3758/s13414-014-0633-3.

Abstract

Visual working memory (VWM) refers to the ability to encode, store, and retrieve visual information. The two prevailing theories that describe VWM assume that information is stored either in discrete slots or within a shared pool of resources. However, there is not yet a good understanding of the neural mechanisms that would underlie such theories. To address this gap, we provide a computationally realized neural account that uses a pool of shared neurons to store information about one or more distinct stimuli. The binding pool model is a neural network that is essentially a hybrid of the slot and resource theories. It describes how information can be stored and retrieved from a pool of shared resources using a type/token architecture (Bowman & Wyble in Psychological Review 114(1), 38-70, 2007; Kanwisher in Cognition 27, 117-143, 1987; Mozer in Journal of Experimental Psychology: Human Perception and Performance 15(2), 287-303, 1989). The model can store multiple distinct objects, each containing binding links to one or more features. The binding links are stored in a pool of shared resources and, thus, produce mutual interference as memory load increases. Given a cue, the model retrieves a specific object and then reconstructs other features bound to that object, along with a confidence metric. The model can simulate data from continuous report and change detection paradigms and generates testable predictions about the interaction of report accuracy, confidence, and stimulus similarity. The testing of such predictions will help to identify the boundaries of shared resource theories, thereby providing insight into the roles of ensembles and context in explaining our ability to remember visual information.

摘要

视觉工作记忆(VWM)是指对视觉信息进行编码、存储和检索的能力。描述VWM的两种主流理论假定信息要么存储在离散的插槽中,要么存储在共享的资源池中。然而,对于支撑这些理论的神经机制,目前尚未有很好的理解。为了填补这一空白,我们提供了一种通过计算实现的神经模型,该模型使用一组共享神经元来存储关于一个或多个不同刺激的信息。绑定池模型是一种神经网络,本质上是插槽理论和资源理论的混合体。它描述了如何使用类型/实例架构(Bowman和Wyble,《心理评论》114(1),38 - 70,2007;Kanwisher,《认知》27,117 - 143,1987;Mozer,《实验心理学杂志:人类知觉与表现》15(2),287 - 303,1989)从共享资源池中存储和检索信息。该模型可以存储多个不同的对象,每个对象都包含到一个或多个特征的绑定链接。这些绑定链接存储在共享资源池中,因此,随着记忆负载的增加会产生相互干扰。给定一个线索,该模型检索一个特定对象,然后重建与该对象绑定的其他特征,以及一个置信度指标。该模型可以模拟连续报告和变化检测范式的数据,并生成关于报告准确性、置信度和刺激相似性相互作用的可测试预测。对这些预测的测试将有助于确定共享资源理论的边界,从而深入了解集合和上下文在解释我们记忆视觉信息能力中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验