Soni Aneri V, Frank Michael J
Brown University.
bioRxiv. 2024 Nov 21:2024.03.24.586455. doi: 10.1101/2024.03.24.586455.
How and why is working memory (WM) capacity limited? Traditional cognitive accounts focus either on limitations on the number or items that can be stored (slots models), or loss of precision with increasing load (resource models). Here we show that a neural network model of prefrontal cortex and basal ganglia can learn to reuse the same prefrontal populations to store multiple items, leading to resource-like constraints within a slot-like system, and inducing a trade-off between quantity and precision of information. Such "chunking" strategies are adapted as a function of reinforcement learning and WM task demands, mimicking human performance and normative models. Moreover, adaptive performance requires a dynamic range of dopaminergic signals to adjust striatal gating policies, providing a new interpretation of WM difficulties in patient populations such as Parkinson's disease, ADHD and schizophrenia. These simulations also suggest a computational rather than anatomical limit to WM capacity.
工作记忆(WM)容量为何以及如何受限?传统认知理论要么聚焦于可存储的数量或项目的限制(插槽模型),要么关注随着负荷增加精度的丧失(资源模型)。在此我们表明,前额叶皮层和基底神经节的神经网络模型能够学会重新利用相同的前额叶神经元群来存储多个项目,从而在类似插槽的系统中产生类似资源的限制,并引发信息数量与精度之间的权衡。这种“组块”策略会根据强化学习和WM任务需求进行调整,模仿人类表现和规范模型。此外,适应性表现需要一定动态范围的多巴胺能信号来调整纹状体的门控策略,这为帕金森病、注意力缺陷多动障碍和精神分裂症等患者群体中WM困难提供了一种新解释。这些模拟还表明WM容量存在计算上而非解剖学上的限制。