Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
Mol Metab. 2013 Nov 28;3(2):114-23. doi: 10.1016/j.molmet.2013.11.005. eCollection 2014 Apr.
Dysregulation of oxidative phosphorylation is associated with increased mitochondrial reactive oxygen species production and some of the most prevalent human diseases including obesity, cancer, diabetes, neurodegeneration, and heart disease. Chemical 'mitochondrial uncouplers' are lipophilic weak acids that transport protons into the mitochondrial matrix via a pathway that is independent of ATP synthase, thereby uncoupling nutrient oxidation from ATP production. Mitochondrial uncouplers also lessen the proton motive force across the mitochondrial inner membrane and thereby increase the rate of mitochondrial respiration while decreasing production of reactive oxygen species. Thus, mitochondrial uncouplers are valuable chemical tools that enable the measurement of maximal mitochondrial respiration and they have been used therapeutically to decrease mitochondrial reactive oxygen species production. However, the most widely used protonophore uncouplers such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and 2,4-dinitrophenol have off-target activity at other membranes that lead to a range of undesired effects including plasma membrane depolarization, mitochondrial inhibition, and cytotoxicity. These unwanted properties interfere with the measurement of mitochondrial function and result in a narrow therapeutic index that limits their usefulness in the clinic. To identify new mitochondrial uncouplers that lack off-target activity at the plasma membrane we screened a small molecule chemical library. Herein we report the identification and validation of a novel mitochondrial protonophore uncoupler (2-fluorophenyl){6-(2-fluorophenyl)amino}amine, named BAM15, that does not depolarize the plasma membrane. Compared to FCCP, an uncoupler of equal potency, BAM15 treatment of cultured cells stimulates a higher maximum rate of mitochondrial respiration and is less cytotoxic. Furthermore, BAM15 is bioactive in vivo and dose-dependently protects mice from acute renal ischemic-reperfusion injury. From a technical standpoint, BAM15 represents an effective new tool that allows the study of mitochondrial function in the absence of off-target effects that can confound data interpretation. From a therapeutic perspective, BAM15-mediated protection from ischemia-reperfusion injury and its reduced toxicity will hopefully reignite interest in pharmacological uncoupling for the treatment of the myriad of diseases that are associated with altered mitochondrial function.
氧化磷酸化的失调与增加的线粒体活性氧物质的产生有关,并且与一些最普遍的人类疾病有关,包括肥胖、癌症、糖尿病、神经退行性疾病和心脏病。化学“线粒体解偶联剂”是亲脂性弱酸,它们通过一种独立于 ATP 合酶的途径将质子运输到线粒体基质中,从而使营养氧化与 ATP 产生解偶联。线粒体解偶联剂还会减轻线粒体内膜内的质子动力,从而增加线粒体呼吸的速率,同时减少活性氧物质的产生。因此,线粒体解偶联剂是有价值的化学工具,可用于测量最大的线粒体呼吸,并且已被用于治疗以减少线粒体活性氧物质的产生。然而,最广泛使用的质子载体解偶联剂,如羰基氰化物 p-三氟甲氧基苯腙(FCCP)和 2,4-二硝基苯酚,在其他膜上具有非靶向活性,导致一系列不良影响,包括质膜去极化、线粒体抑制和细胞毒性。这些不想要的性质会干扰线粒体功能的测量,并导致治疗指数狭窄,限制了它们在临床上的用途。为了鉴定在质膜上没有非靶向活性的新的线粒体解偶联剂,我们筛选了一个小分子化学文库。在此,我们报告了一种新型线粒体质子载体解偶联剂(2-氟苯基){6-(2-氟苯基)氨基}胺(命名为 BAM15)的鉴定和验证,该解偶联剂不会使质膜去极化。与同等效力的解偶联剂 FCCP 相比,BAM15 处理培养细胞会刺激更高的最大线粒体呼吸速率,并且细胞毒性更低。此外,BAM15 在体内具有生物活性,并剂量依赖性地保护小鼠免受急性肾缺血再灌注损伤。从技术角度来看,BAM15 代表了一种有效的新工具,可在没有可能混淆数据解释的非靶向作用的情况下研究线粒体功能。从治疗角度来看,BAM15 介导的缺血再灌注损伤保护及其降低的毒性有望重新激发人们对药理学解偶联治疗与改变线粒体功能有关的众多疾病的兴趣。