Lorthois Sylvie, Duru Paul, Billanou Ian, Quintard Michel, Celsis Pierre
CNRS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France; Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France.
Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France; CNRS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France.
J Theor Biol. 2014 Jul 21;353:157-69. doi: 10.1016/j.jtbi.2014.03.004. Epub 2014 Mar 14.
One the one hand, capillary permeability to water is a well-defined concept in microvascular physiology, and linearly relates the net convective or diffusive mass fluxes (by unit area) to the differences in pressure or concentration, respectively, that drive them through the vessel wall. On the other hand, the permeability coefficient is a central parameter introduced when modeling diffusible tracers transfer from blood vessels to tissue in the framework of compartmental models, in such a way that it is implicitly considered as being identical to the capillary permeability. Despite their simplifying assumptions, such models are at the basis of blood flow quantification by H2(15)O Positron Emission Tomgraphy. In the present paper, we use fluid dynamic modeling to compute the transfers of H2(15)O between the blood and brain parenchyma at capillary scale. The analysis of the so-obtained kinetic data by the Renkin-Crone model, the archetypal compartmental model, demonstrates that, in this framework, the permeability coefficient is highly dependent on both flow rate and capillary radius, contrarily to the central hypothesis of the model which states that it is a physiological constant. Thus, the permeability coefficient in Renkin-Crone׳s model is not conceptually identical to the physiologic permeability as implicitly stated in the model. If a permeability coefficient is nevertheless arbitrarily chosen in the computed range, the flow rate determined by the Renkin-Crone model can take highly inaccurate quantitative values. The reasons for this failure of compartmental approaches in the framework of brain blood flow quantification are discussed, highlighting the need for a novel approach enabling to fully exploit the wealth of information available from PET data.
一方面,在微血管生理学中,毛细血管对水的通透性是一个明确的概念,它分别将净对流或扩散质量通量(单位面积)与驱动它们穿过血管壁的压力差或浓度差线性相关联。另一方面,渗透系数是在隔室模型框架下对可扩散示踪剂从血管向组织转移进行建模时引入的一个核心参数,其方式是隐含地认为它与毛细血管通透性相同。尽管这些模型有简化假设,但它们是通过H₂¹⁵O正电子发射断层扫描进行血流定量的基础。在本文中,我们使用流体动力学建模来计算毛细血管尺度下H₂¹⁵O在血液和脑实质之间的转移。通过典型的隔室模型——伦金 - 克罗恩模型对如此获得的动力学数据进行分析表明,在此框架下,渗透系数高度依赖于流速和毛细血管半径,这与该模型的核心假设相反,该假设认为它是一个生理常数。因此,伦金 - 克罗恩模型中的渗透系数在概念上与模型隐含表述的生理通透性并不相同。如果在计算范围内任意选择一个渗透系数,由伦金 - 克罗恩模型确定的流速可能会得出高度不准确的定量值。讨论了在脑血流定量框架下隔室方法失败的原因,强调了需要一种新方法来充分利用PET数据中可用的丰富信息。