Smith Linda B, Suanda Sumarga H, Yu Chen
Psychological and Brain Sciences, Program in Cognitive Science, Indiana University, Bloomington, IN 47405, USA.
Psychological and Brain Sciences, Program in Cognitive Science, Indiana University, Bloomington, IN 47405, USA.
Trends Cogn Sci. 2014 May;18(5):251-8. doi: 10.1016/j.tics.2014.02.007. Epub 2014 Mar 14.
Recent theory and experiments offer a new solution regarding how infant learners may break into word learning by using cross-situational statistics to find the underlying word-referent mappings. Computational models demonstrate the in-principle plausibility of this statistical learning solution and experimental evidence shows that infants can aggregate and make statistically appropriate decisions from word-referent co-occurrence data. We review these contributions and then identify the gaps in current knowledge that prevent a confident conclusion about whether cross-situational learning is the mechanism through which infants break into word learning. We propose an agenda to address that gap that focuses on detailing the statistics in the learning environment and the cognitive processes that make use of those statistics.
近期的理论和实验提出了一种新的解决方案,涉及婴儿学习者如何通过使用跨情境统计来找出潜在的单词-所指映射,从而进入单词学习阶段。计算模型证明了这种统计学习解决方案在原则上的合理性,实验证据表明婴儿能够汇总并根据单词-所指共现数据做出符合统计规律的决策。我们回顾了这些贡献,然后指出当前知识中的空白,这些空白使得我们无法就跨情境学习是否是婴儿进入单词学习的机制得出确定的结论。我们提出了一个议程来填补这一空白,该议程侧重于详细说明学习环境中的统计数据以及利用这些统计数据的认知过程。