Hernansanz-Agustín Pablo, Izquierdo-Álvarez Alicia, Sánchez-Gómez Francisco J, Ramos Elena, Villa-Piña Tamara, Lamas Santiago, Bogdanova Anna, Martínez-Ruiz Antonio
Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols, E-28029 Madrid, Spain.
Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain.
Free Radic Biol Med. 2014 Jun;71:146-156. doi: 10.1016/j.freeradbiomed.2014.03.011. Epub 2014 Mar 15.
Oxygen is a key molecule for cell metabolism. Eukaryotic cells sense the reduction in oxygen availability (hypoxia) and trigger a series of cellular and systemic responses to adapt to hypoxia, including the optimization of oxygen consumption. Many of these responses are mediated by a genetic program induced by the hypoxia-inducible transcription factors (HIFs), regulated by a family of prolyl hydroxylases (PHD or EGLN) that use oxygen as a substrate producing HIF hydroxylation. In parallel to these oxygen sensors modulating gene expression within hours, acute modulation of protein function in response to hypoxia is known to occur within minutes. Free radicals acting as second messengers, and oxidative posttranslational modifications, have been implied in both groups of responses. Localization and speciation of the paradoxical increase in reactive oxygen species production in hypoxia remain debatable. We have observed that several cell types respond to acute hypoxia with a transient increase in superoxide production for about 10 min, probably originating in the mitochondria. This may explain in part the apparently divergent results found by various groups that have not taken into account the time frame of hypoxic ROS production. We propose that this acute and transient hypoxia-induced superoxide burst may be translated into oxidative signals contributing to hypoxic adaptation and preconditioning.
氧气是细胞代谢的关键分子。真核细胞感知氧气供应减少(缺氧)并触发一系列细胞和全身反应以适应缺氧,包括优化氧气消耗。这些反应中的许多是由缺氧诱导转录因子(HIFs)诱导的遗传程序介导的,该程序由一组以氧气为底物产生HIF羟基化的脯氨酰羟化酶(PHD或EGLN)调节。与这些在数小时内调节基因表达的氧气传感器并行,已知对缺氧的蛋白质功能的急性调节在数分钟内发生。作为第二信使的自由基和氧化翻译后修饰在两组反应中都有涉及。缺氧时活性氧产生的矛盾性增加的定位和形态仍存在争议。我们观察到几种细胞类型对急性缺氧的反应是超氧化物产生短暂增加约10分钟,可能起源于线粒体。这可能部分解释了未考虑缺氧ROS产生时间框架的不同研究小组得出的明显不同的结果。我们提出,这种急性和短暂的缺氧诱导的超氧化物爆发可能转化为有助于缺氧适应和预处理的氧化信号。