Suppr超能文献

使用稀疏表示构建新生儿图谱。

Neonatal atlas construction using sparse representation.

作者信息

Shi Feng, Wang Li, Wu Guorong, Li Gang, Gilmore John H, Lin Weili, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina.

出版信息

Hum Brain Mapp. 2014 Sep;35(9):4663-77. doi: 10.1002/hbm.22502. Epub 2014 Mar 17.

Abstract

Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases.

摘要

图谱构建通常首先包括一个图像配准步骤,将所有图像归一化到一个公共空间,然后是一个图谱构建步骤,融合所有对齐图像的信息。尽管已经进行了大量的图谱构建研究来提高图像配准步骤的准确性,但在图谱构建步骤中通常使用未加权或简单加权平均。在本文中,我们提出了一种新颖的基于补丁的稀疏表示方法,用于在所有图像都已配准到公共空间后进行图谱构建。通过利用局部稀疏表示,可以在构建的图谱中恢复更多的解剖细节。为了使图谱中的解剖结构在空间上平滑,对表示的组结构施加解剖特征约束以及相邻补丁的重叠,以确保相邻补丁之间的解剖一致性。所提出的方法已应用于73幅空间分辨率差和组织对比度低的新生儿磁共振图像,用于构建具有清晰解剖细节的新生儿脑图谱。实验结果表明,所提出的方法可以通过发现更多的解剖细节,特别是在高度卷曲的皮质区域,显著提高构建图谱的质量。与其他最新的新生儿脑图谱相比,所得图谱在应用于对三个不同的新生儿数据集进行空间归一化时表现出优越的性能。

相似文献

1
Neonatal atlas construction using sparse representation.使用稀疏表示构建新生儿图谱。
Hum Brain Mapp. 2014 Sep;35(9):4663-77. doi: 10.1002/hbm.22502. Epub 2014 Mar 17.
2
Atlas construction via dictionary learning and group sparsity.基于字典学习和组稀疏性的图谱构建
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):247-55. doi: 10.1007/978-3-642-33415-3_31.
9
Construction of Neonatal Diffusion Atlases via Spatio-Angular Consistency.通过空间角一致性构建新生儿扩散图谱。
Patch Based Tech Med Imaging (2016). 2016 Oct;9993:9-16. doi: 10.1007/978-3-319-47118-1_2. Epub 2016 Sep 22.

引用本文的文献

3
Learning 4D Infant Cortical Surface Atlas with Unsupervised Spherical Networks.使用无监督球面网络学习4D婴儿皮质表面图谱。
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12902:262-272. doi: 10.1007/978-3-030-87196-3_25. Epub 2021 Sep 21.
5
Constructing Connectome Atlas by Graph Laplacian Learning.通过图拉普拉斯学习构建连接体图谱。
Neuroinformatics. 2021 Apr;19(2):233-249. doi: 10.1007/s12021-020-09482-8.
6
Surface-Volume Consistent Construction of Longitudinal Atlases for the Early Developing Brain.早期发育大脑纵向图谱的表面-体积一致构建
Med Image Comput Comput Assist Interv. 2019 Oct;11765:815-822. doi: 10.1007/978-3-030-32245-8_90. Epub 2019 Oct 10.
9
10
Computational neuroanatomy of baby brains: A review.婴儿大脑的计算神经解剖学:综述。
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.

本文引用的文献

1
Atlas construction via dictionary learning and group sparsity.基于字典学习和组稀疏性的图谱构建
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):247-55. doi: 10.1007/978-3-642-33415-3_31.
3
LABEL: pediatric brain extraction using learning-based meta-algorithm.标签:基于学习的元算法进行儿科脑提取。
Neuroimage. 2012 Sep;62(3):1975-86. doi: 10.1016/j.neuroimage.2012.05.042. Epub 2012 May 24.
6
Brain templates and atlases.脑模板和图谱。
Neuroimage. 2012 Aug 15;62(2):911-22. doi: 10.1016/j.neuroimage.2012.01.024. Epub 2012 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验