Suppr超能文献

化学衍生石墨烯的共价表面修饰及其作为超级电容器电极材料的应用。

Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material.

作者信息

Jana Milan, Khanra Partha, Murmu Naresh Chandra, Samanta Pranab, Lee Joong Hee, Kuila Tapas

机构信息

Surface Engineering & Tribology Division, Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute, Durgapur - 713209, India.

出版信息

Phys Chem Chem Phys. 2014 Apr 28;16(16):7618-26. doi: 10.1039/c3cp54510e.

Abstract

A simple and effective method using 6-amino-4-hydroxy-2-naphthalenesulfonic acid (ANS) for the synthesis of water dispersible graphene has been described. Ultraviolet-visible (UV-vis) spectroscopy reveals that ANS-modified reduced graphene oxide (ANS-rGO) obeys Beers law at moderate concentrations. Fourier transform infrared and X-ray photoelectron spectroscopies provide quantitative information regarding the removal of oxygen functional groups from graphene oxide (GO) and the appearance of new functionalities in ANS-rGO. The electrochemical performances of ANS-rGO have been determined by cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy analysis. Charge-discharge experiments show that ANS-rGO is an outstanding supercapacitor electrode material due to its high specific capacitance (375 F g(-1) at a current density of 1.3 A g(-1)) and very good electrochemical cyclic stability (∼97.5% retention in specific capacitance after 1000 charge-discharge cycles). ANS-rGO exhibits promising characteristics with a very high power density (1328 W kg(-1)) and energy density (213 W h kg(-1)).

摘要

本文描述了一种使用6-氨基-4-羟基-2-萘磺酸(ANS)合成水分散性石墨烯的简单有效方法。紫外可见(UV-vis)光谱表明,ANS修饰的还原氧化石墨烯(ANS-rGO)在中等浓度下符合比尔定律。傅里叶变换红外光谱和X射线光电子能谱提供了有关从氧化石墨烯(GO)中去除氧官能团以及ANS-rGO中新官能团出现的定量信息。通过循环伏安法、充放电和电化学阻抗谱分析测定了ANS-rGO的电化学性能。充放电实验表明,ANS-rGO是一种出色的超级电容器电极材料,因其具有高比电容(在电流密度为1.3 A g(-1)时为375 F g(-1))和非常好的电化学循环稳定性(1000次充放电循环后比电容保留率约为97.5%)。ANS-rGO具有非常高的功率密度(1328 W kg(-1))和能量密度(213 W h kg(-1)),展现出良好的特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验