Berk Richard, Pitkin Emil, Brown Lawrence, Buja Andreas, George Edward, Zhao Linda
Department of Statistics, University of Pennsylvania, Philadelphia, PA, USA.
Eval Rev. 2013 Jun-Aug;37(3-4):170-96. doi: 10.1177/0193841X13513025. Epub 2014 Mar 18.
It has become common practice to analyze randomized experiments using linear regression with covariates. Improved precision of treatment effect estimates is the usual motivation. In a series of important articles, David Freedman showed that this approach can be badly flawed. Recent work by Winston Lin offers partial remedies, but important problems remain.
In this article, we address those problems through a reformulation of the Neyman causal model. We provide a practical estimator and valid standard errors for the average treatment effect. Proper generalizations to well-defined populations can follow.
In most applications, the use of covariates to improve precision is not worth the trouble.
使用带有协变量的线性回归分析随机实验已成为常见做法。提高治疗效果估计的精度是通常的动机。在一系列重要文章中,大卫·弗里德曼表明这种方法可能存在严重缺陷。温斯顿·林最近的工作提供了部分补救措施,但重要问题仍然存在。
在本文中,我们通过重新构建奈曼因果模型来解决这些问题。我们为平均治疗效果提供了一个实用的估计器和有效的标准误差。可以对定义明确的总体进行适当的推广。
在大多数应用中,使用协变量来提高精度不值得麻烦。