Suppr超能文献

单个神经元 NMDA 受体表型影响创伤后神经元的重布线和再整合。

Single-neuron NMDA receptor phenotype influences neuronal rewiring and reintegration following traumatic injury.

机构信息

Departments of Bioengineering and Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

出版信息

J Neurosci. 2014 Mar 19;34(12):4200-13. doi: 10.1523/JNEUROSCI.4172-13.2014.

Abstract

Alterations in the activity of neural circuits are a common consequence of traumatic brain injury (TBI), but the relationship between single-neuron properties and the aggregate network behavior is not well understood. We recently reported that the GluN2B-containing NMDA receptors (NMDARs) are key in mediating mechanical forces during TBI, and that TBI produces a complex change in the functional connectivity of neuronal networks. Here, we evaluated whether cell-to-cell heterogeneity in the connectivity and aggregate contribution of GluN2B receptors to [Ca(2+)]i before injury influenced the functional rewiring, spontaneous activity, and network plasticity following injury using primary rat cortical dissociated neurons. We found that the functional connectivity of a neuron to its neighbors, combined with the relative influx of calcium through distinct NMDAR subtypes, together contributed to the individual neuronal response to trauma. Specifically, individual neurons whose [Ca(2+)]i oscillations were largely due to GluN2B NMDAR activation lost many of their functional targets 1 h following injury. In comparison, neurons with large GluN2A contribution or neurons with high functional connectivity both independently protected against injury-induced loss in connectivity. Mechanistically, we found that traumatic injury resulted in increased uncorrelated network activity, an effect linked to reduction of the voltage-sensitive Mg(2+) block of GluN2B-containing NMDARs. This uncorrelated activation of GluN2B subtypes after injury significantly limited the potential for network remodeling in response to a plasticity stimulus. Together, our data suggest that two single-cell characteristics, the aggregate contribution of NMDAR subtypes and the number of functional connections, influence network structure following traumatic injury.

摘要

神经元回路活动的改变是创伤性脑损伤(TBI)的常见后果,但单个神经元的特性与总体网络行为之间的关系还没有得到很好的理解。我们最近报告称,含有 GluN2B 的 NMDA 受体(NMDARs)在 TBI 期间介导机械力方面起着关键作用,并且 TBI 会导致神经元网络的功能连接发生复杂变化。在这里,我们评估了损伤前 GluN2B 受体的连接和总体贡献的细胞间异质性是否会影响使用原代大鼠皮质分离神经元损伤后的功能重连、自发活动和网络可塑性。我们发现,神经元与其相邻神经元的功能连接,以及通过不同的 NMDAR 亚型进入的相对钙量,共同导致神经元对创伤的个体反应。具体而言,由于 GluN2B NMDAR 激活而导致 [Ca(2+)]i 振荡的个体神经元在损伤后 1 小时内失去了许多功能靶标。相比之下,GluN2A 贡献大或功能连接性高的神经元都独立地保护了神经元免受损伤引起的连接丧失。从机制上讲,我们发现创伤性损伤导致无关联的网络活动增加,这种效应与 GluN2B 型 NMDAR 的电压敏感 Mg(2+)阻断减少有关。损伤后 GluN2B 型 NMDAR 的这种无关联激活显著限制了网络响应可塑性刺激进行重塑的潜力。总之,我们的数据表明,两个单细胞特征,即 NMDAR 亚型的总体贡献和功能连接的数量,影响创伤后网络结构。

相似文献

1
Single-neuron NMDA receptor phenotype influences neuronal rewiring and reintegration following traumatic injury.
J Neurosci. 2014 Mar 19;34(12):4200-13. doi: 10.1523/JNEUROSCI.4172-13.2014.
2
Multiple domains in the C-terminus of NMDA receptor GluN2B subunit contribute to neuronal death following in vitro ischemia.
Neurobiol Dis. 2016 May;89:223-34. doi: 10.1016/j.nbd.2015.11.007. Epub 2015 Nov 12.
4
Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner.
J Neurophysiol. 2019 Jan 1;121(1):306-320. doi: 10.1152/jn.00664.2018. Epub 2018 Dec 5.
5
Interaction between αCaMKII and GluN2B controls ERK-dependent plasticity.
J Neurosci. 2012 Aug 1;32(31):10767-79. doi: 10.1523/JNEUROSCI.5622-11.2012.
6
Stretch injury selectively enhances extrasynaptic, GluN2B-containing NMDA receptor function in cortical neurons.
J Neurophysiol. 2013 Jul;110(1):131-40. doi: 10.1152/jn.01011.2012. Epub 2013 Apr 10.
9
Neuroprotection against traumatic brain injury by a peptide derived from the collapsin response mediator protein 2 (CRMP2).
J Biol Chem. 2011 Oct 28;286(43):37778-92. doi: 10.1074/jbc.M111.255455. Epub 2011 Aug 9.
10
GluN2A-NMDA receptor-mediated sustained Ca influx leads to homocysteine-induced neuronal cell death.
J Biol Chem. 2019 Jul 19;294(29):11154-11165. doi: 10.1074/jbc.RA119.008820. Epub 2019 Jun 5.

引用本文的文献

2
The link between impact-induced tensile strain and dendritic spine morphology in porcine brain tissue.
PLoS One. 2025 Feb 24;20(2):e0318932. doi: 10.1371/journal.pone.0318932. eCollection 2025.
3
Ectopic expression of the cation-chloride cotransporter KCC2 in blood exosomes as a biomarker for functional rehabilitation.
Front Mol Neurosci. 2025 Feb 5;18:1522571. doi: 10.3389/fnmol.2025.1522571. eCollection 2025.
5
Proposed mechanisms of tau: relationships to traumatic brain injury, Alzheimer's disease, and epilepsy.
Front Neurol. 2024 Jan 5;14:1287545. doi: 10.3389/fneur.2023.1287545. eCollection 2023.
6
Mild traumatic brain injury as a pathological process.
Heliyon. 2023 Jul 17;9(7):e18342. doi: 10.1016/j.heliyon.2023.e18342. eCollection 2023 Jul.
7
Single Neuron Modeling Identifies Potassium Channel Modulation as Potential Target for Repetitive Head Impacts.
Neuroinformatics. 2023 Jul;21(3):501-516. doi: 10.1007/s12021-023-09633-7. Epub 2023 Jun 9.
8
Flexibility of cortical circuits influences resilience from microtrauma.
Front Cell Neurosci. 2022 Dec 16;16:991740. doi: 10.3389/fncel.2022.991740. eCollection 2022.
10
Evaluating spatial and network properties of NMDA-dependent neuronal connectivity in mixed cortical cultures.
Brain Res. 2022 Jul 15;1787:147919. doi: 10.1016/j.brainres.2022.147919. Epub 2022 Apr 15.

本文引用的文献

1
Traumatic brain injury impairs small-world topology.
Neurology. 2013 May 14;80(20):1826-33. doi: 10.1212/WNL.0b013e3182929f38. Epub 2013 Apr 17.
2
Stretch injury selectively enhances extrasynaptic, GluN2B-containing NMDA receptor function in cortical neurons.
J Neurophysiol. 2013 Jul;110(1):131-40. doi: 10.1152/jn.01011.2012. Epub 2013 Apr 10.
3
Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3567-72. doi: 10.1073/pnas.1216958110. Epub 2013 Feb 11.
4
A decade of DTI in traumatic brain injury: 10 years and 100 articles later.
AJNR Am J Neuroradiol. 2013 Nov-Dec;34(11):2064-74. doi: 10.3174/ajnr.A3395. Epub 2013 Jan 10.
5
Antagonism of purinergic signalling improves recovery from traumatic brain injury.
Brain. 2013 Jan;136(Pt 1):65-80. doi: 10.1093/brain/aws286. Epub 2013 Jan 4.
6
Optimization of a GCaMP calcium indicator for neural activity imaging.
J Neurosci. 2012 Oct 3;32(40):13819-40. doi: 10.1523/JNEUROSCI.2601-12.2012.
8
Salience network integrity predicts default mode network function after traumatic brain injury.
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4690-5. doi: 10.1073/pnas.1113455109. Epub 2012 Mar 5.
9
Diversity in NMDA receptor composition: many regulators, many consequences.
Neuroscientist. 2013 Feb;19(1):62-75. doi: 10.1177/1073858411435129. Epub 2012 Feb 17.
10
Synaptic plasticity of NMDA receptors: mechanisms and functional implications.
Curr Opin Neurobiol. 2012 Jun;22(3):496-508. doi: 10.1016/j.conb.2012.01.007. Epub 2012 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验