Suppr超能文献

潜在类别检测与类别分配:MAXEIG 分类测量程序与因子混合建模方法的比较

Latent Class Detection and Class Assignment: A Comparison of the MAXEIG Taxometric Procedure and Factor Mixture Modeling Approaches.

作者信息

Lubke Gitta, Tueller Stephen

机构信息

University of Notre Dame.

出版信息

Struct Equ Modeling. 2010 Oct 1;17(4):605-628. doi: 10.1080/10705511.2010.510050. Epub 2010 Oct 12.

Abstract

Taxometric procedures such as MAXEIG and factor mixture modeling (FMM) are used in latent class clustering, but they have very different sets of strengths and weaknesses. Taxometric procedures, popular in psychiatric and psychopathology applications, do not rely on distributional assumptions. Their sole purpose is to detect the presence of latent classes. The procedures capitalize on the assumption that, due to mean differences between two classes, item covariances within class are smaller than item covariances between the classes. FMM goes beyond class detection and permits the specification of hypothesis-based within-class covariance structures ranging from local independence to multidimensional within-class factor models. In principle, FMM permits the comparison of alternative models using likelihood-based indexes. These advantages come at the price of distributional assumptions. In addition, models are often highly parameterized and susceptible to misspecifications of the within-class covariance structure. Following an illustration with an empirical data set of binary depression items, the MAXEIG procedure and FMM are compared in a simulation study focusing on class detection and the assignment of subjects to the latent classes. FMM generally outperformed MAXEIG in terms of class detection and class assignment. Substantially different class sizes negatively impacted the performance of both approaches, whereas low class separation was much more problematic for MAXEIG than for the FMM.

摘要

诸如最大特征值法(MAXEIG)和因子混合模型(FMM)等分类分析程序用于潜在类别聚类,但它们的优缺点集差异很大。分类分析程序在精神病学和精神病理学应用中很流行,不依赖于分布假设。它们的唯一目的是检测潜在类别的存在。这些程序利用了这样一种假设,即由于两类之间的均值差异,类内项目协方差小于类间项目协方差。FMM 超越了类别检测,允许指定基于假设的类内协方差结构,范围从局部独立性到多维类内因子模型。原则上,FMM 允许使用基于似然性的指标比较替代模型。这些优势是以分布假设为代价的。此外,模型通常参数化程度很高,容易出现类内协方差结构的错误设定。在用二元抑郁项目的实证数据集进行说明之后,在一项侧重于类别检测和将受试者分配到潜在类别的模拟研究中比较了 MAXEIG 程序和 FMM。在类别检测和类别分配方面,FMM 总体上优于 MAXEIG。类大小的显著差异对两种方法的性能都有负面影响,而低类别区分度对 MAXEIG 来说比 FMM 问题大得多。

相似文献

1
Latent Class Detection and Class Assignment: A Comparison of the MAXEIG Taxometric Procedure and Factor Mixture Modeling Approaches.
Struct Equ Modeling. 2010 Oct 1;17(4):605-628. doi: 10.1080/10705511.2010.510050. Epub 2010 Oct 12.
2
Abstract: A Comparison of the Factor Mixture Model and Taxometric Procedures.
Multivariate Behav Res. 2008 Oct-Dec;43(4):660. doi: 10.1080/00273170802640517.
4
Factor mixture modeling of the Penn State Worry Questionnaire: Evidence for distinct classes of worry.
J Anxiety Disord. 2016 Jan;37:40-7. doi: 10.1016/j.janxdis.2015.11.001. Epub 2015 Nov 10.
5
Taxometric analysis as a general strategy for distinguishing categorical from dimensional latent structure.
Psychol Methods. 2012 Jun;17(2):284-93. doi: 10.1037/a0026973. Epub 2012 Jan 16.
6
Finite Mixture Models with Student t Distributions: an Applied Example.
Prev Sci. 2020 Aug;21(6):872-883. doi: 10.1007/s11121-020-01109-3.
8
DIF Detection With Zero-Inflation Under the Factor Mixture Modeling Framework.
Educ Psychol Meas. 2022 Aug;82(4):678-704. doi: 10.1177/00131644211028995. Epub 2021 Jul 26.
9
Should health anxiety be carved at the joint? A look at the health anxiety construct using factor mixture modeling in a non-clinical sample.
J Anxiety Disord. 2012 Jan;26(1):246-51. doi: 10.1016/j.janxdis.2011.11.009. Epub 2011 Nov 28.

引用本文的文献

1
Skew Mixture Latent State-Trait Analysis: A Monte Carlo Simulation Study on Statistical Performance.
Front Psychol. 2018 Aug 2;9:1323. doi: 10.3389/fpsyg.2018.01323. eCollection 2018.
2
Assessing Model Selection Uncertainty Using a Bootstrap Approach: An update.
Struct Equ Modeling. 2017;24(2):230-245. doi: 10.1080/10705511.2016.1252265. Epub 2016 Dec 5.
3
Fitting latent variable mixture models.
Behav Res Ther. 2017 Nov;98:91-102. doi: 10.1016/j.brat.2017.04.003. Epub 2017 Apr 17.
4
6
Reply to Falcon.
Biol Lett. 2016 May;12(5). doi: 10.1098/rsbl.2016.0213.
7
Getting less of what you want: reductions in statistical power and increased bias when categorizing medication adherence data.
J Behav Med. 2016 Dec;39(6):969-980. doi: 10.1007/s10865-016-9727-9. Epub 2016 Feb 27.
9
10
Identification of anxiety sensitivity classes and clinical cut-scores in a sample of adult smokers: results from a factor mixture model.
J Anxiety Disord. 2014 Oct;28(7):696-703. doi: 10.1016/j.janxdis.2014.07.006. Epub 2014 Jul 19.

本文引用的文献

1
Distinguishing Between Latent Classes and Continuous Factors: Resolution by Maximum Likelihood?
Multivariate Behav Res. 2006 Dec 1;41(4):499-532. doi: 10.1207/s15327906mbr4104_4.
2
An Analysis of Meehl's MAXCOV-HITMAX Procedure for the Case of Continuous Indicators.
Multivariate Behav Res. 2005 Oct 1;40(4):489-518. doi: 10.1207/s15327906mbr4004_5.
3
An Analysis of Meehl's MAXCOV-HITMAX Procedure for the Case of Dichotomous Indicators.
Multivariate Behav Res. 2003 Jan 1;38(1):81-112. doi: 10.1207/S15327906MBR3801_4.
4
Applying the Bootstrap to Taxometric Analysis: Generating Empirical Sampling Distributions to Help Interpret Results.
Multivariate Behav Res. 2007 Apr-Jun;42(2):349-86. doi: 10.1080/00273170701360795.
5
Evaluation of structural equation mixture models Parameter estimates and correct class assignment.
Struct Equ Modeling. 2010 Apr 1;17(2):165-192. doi: 10.1080/10705511003659318.
7
Maternal ratings of attention problems in ADHD: evidence for the existence of a continuum.
J Am Acad Child Adolesc Psychiatry. 2009 Nov;48(11):1085-1093. doi: 10.1097/CHI.0b013e3181ba3dbb.
9
Assigning cases to groups using taxometric results: an empirical comparison of classification techniques.
Assessment. 2009 Mar;16(1):55-70. doi: 10.1177/1073191108320193. Epub 2008 Jul 7.
10
Inferential errors in taxometric analyses of ordered three-class constructs.
J Pers Assess. 2008 Jan;90(1):11-25. doi: 10.1080/00223890701356755.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验