Lubke Gitta, Tueller Stephen
University of Notre Dame.
Struct Equ Modeling. 2010 Oct 1;17(4):605-628. doi: 10.1080/10705511.2010.510050. Epub 2010 Oct 12.
Taxometric procedures such as MAXEIG and factor mixture modeling (FMM) are used in latent class clustering, but they have very different sets of strengths and weaknesses. Taxometric procedures, popular in psychiatric and psychopathology applications, do not rely on distributional assumptions. Their sole purpose is to detect the presence of latent classes. The procedures capitalize on the assumption that, due to mean differences between two classes, item covariances within class are smaller than item covariances between the classes. FMM goes beyond class detection and permits the specification of hypothesis-based within-class covariance structures ranging from local independence to multidimensional within-class factor models. In principle, FMM permits the comparison of alternative models using likelihood-based indexes. These advantages come at the price of distributional assumptions. In addition, models are often highly parameterized and susceptible to misspecifications of the within-class covariance structure. Following an illustration with an empirical data set of binary depression items, the MAXEIG procedure and FMM are compared in a simulation study focusing on class detection and the assignment of subjects to the latent classes. FMM generally outperformed MAXEIG in terms of class detection and class assignment. Substantially different class sizes negatively impacted the performance of both approaches, whereas low class separation was much more problematic for MAXEIG than for the FMM.
诸如最大特征值法(MAXEIG)和因子混合模型(FMM)等分类分析程序用于潜在类别聚类,但它们的优缺点集差异很大。分类分析程序在精神病学和精神病理学应用中很流行,不依赖于分布假设。它们的唯一目的是检测潜在类别的存在。这些程序利用了这样一种假设,即由于两类之间的均值差异,类内项目协方差小于类间项目协方差。FMM 超越了类别检测,允许指定基于假设的类内协方差结构,范围从局部独立性到多维类内因子模型。原则上,FMM 允许使用基于似然性的指标比较替代模型。这些优势是以分布假设为代价的。此外,模型通常参数化程度很高,容易出现类内协方差结构的错误设定。在用二元抑郁项目的实证数据集进行说明之后,在一项侧重于类别检测和将受试者分配到潜在类别的模拟研究中比较了 MAXEIG 程序和 FMM。在类别检测和类别分配方面,FMM 总体上优于 MAXEIG。类大小的显著差异对两种方法的性能都有负面影响,而低类别区分度对 MAXEIG 来说比 FMM 问题大得多。