Suppr超能文献

利用分类结果区分潜在类别与连续因素:因素混合模型参数的类别不变性

Distinguishing between latent classes and continuous factors with categorical outcomes: Class invariance of parameters of factor mixture models.

作者信息

Lubke Gitta, Neale Michael

机构信息

University of Notre Dame.

出版信息

Multivariate Behav Res. 2008 Oct;43(4):592-620. doi: 10.1080/00273170802490673.

Abstract

Factor mixture models (FMM's) are latent variable models with categorical and continuous latent variables which can be used as a model-based approach to clustering. A previous paper covered the results of a simulation study showing that in the absence of model violations, it is usually possible to choose the correct model when fitting a series of models with different numbers of classes and factors within class. The response format in the first study was limited to normally distributed outcomes. The current paper has two main goals, firstly, to replicate parts of the first study with 5-point Likert scale and binary outcomes, and secondly, to address the issue of testing class invariance of thresholds and loadings. Testing for class invariance of parameters is important in the context of measurement invariance and when using mixture models to approximate non-normal distributions. Results show that it is possible to discriminate between latent class models and factor models even if responses are categorical. Comparing models with and without class-specific parameters can lead to incorrectly accepting parameter invariance if the compared models differ substantially with respect to the number of estimated parameters. The simulation study is complemented with an illustration of a factor mixture analysis of ten binary depression items obtained from a female subsample of the Virginia Twin Registry.

摘要

因子混合模型(FMM)是具有分类和连续潜在变量的潜在变量模型,可作为基于模型的聚类方法。之前的一篇论文涵盖了一项模拟研究的结果,该研究表明,在不存在模型违背的情况下,在拟合一系列具有不同类别数量和类别内因子数量的模型时,通常能够选择正确的模型。第一项研究中的响应格式仅限于正态分布的结果。当前论文有两个主要目标,首先,用5点李克特量表和二元结果重复第一项研究的部分内容,其次,解决检验阈值和负荷的类别不变性问题。在测量不变性的背景下以及使用混合模型近似非正态分布时,检验参数的类别不变性很重要。结果表明,即使响应是分类的,也能够区分潜在类别模型和因子模型。如果所比较的模型在估计参数数量方面存在很大差异,那么比较具有和不具有类别特定参数的模型可能会导致错误地接受参数不变性。模拟研究辅以对从弗吉尼亚双胞胎登记处的女性子样本中获得的十个二元抑郁项目进行因子混合分析的示例。

相似文献

2
Distinguishing Between Latent Classes and Continuous Factors: Resolution by Maximum Likelihood?
Multivariate Behav Res. 2006 Dec 1;41(4):499-532. doi: 10.1207/s15327906mbr4104_4.
4
Testing measurement invariance in longitudinal data with ordered-categorical measures.
Psychol Methods. 2017 Sep;22(3):486-506. doi: 10.1037/met0000075. Epub 2016 May 23.
5
The consequences of ignoring measurement invariance for path coefficients in structural equation models.
Front Psychol. 2014 Sep 17;5:980. doi: 10.3389/fpsyg.2014.00980. eCollection 2014.
6
Testing for heterogeneous factor loadings using mixtures of confirmatory factor analysis models.
Front Psychol. 2010 Oct 29;1:165. doi: 10.3389/fpsyg.2010.00165. eCollection 2010.
7
Fitting latent variable mixture models.
Behav Res Ther. 2017 Nov;98:91-102. doi: 10.1016/j.brat.2017.04.003. Epub 2017 Apr 17.
8
Mixture IRT Model With a Higher-Order Structure for Latent Traits.
Educ Psychol Meas. 2017 Apr;77(2):275-304. doi: 10.1177/0013164416640327. Epub 2016 Apr 1.
9
Testing Measurement Invariance Across Unobserved Groups: The Role of Covariates in Factor Mixture Modeling.
Educ Psychol Meas. 2021 Feb;81(1):61-89. doi: 10.1177/0013164420925122. Epub 2020 May 28.
10
Identification of Confirmatory Factor Analysis Models of Different Levels of Invariance for Ordered Categorical Outcomes.
Psychometrika. 2016 Dec;81(4):1014-1045. doi: 10.1007/s11336-016-9506-0. Epub 2016 Jul 11.

引用本文的文献

1
On the Use of Elbow Plot Method for Class Enumeration in Factor Mixture Models.
Appl Psychol Meas. 2025 May 20:01466216251344288. doi: 10.1177/01466216251344288.
2
On the structure of psychoeducational constructs: taxometric analysis and epistemological implications.
Front Psychol. 2025 Mar 17;16:1499960. doi: 10.3389/fpsyg.2025.1499960. eCollection 2025.
5
Probing the overarching continuum theory: data-driven phenotypic clustering of children with ASD or ADHD.
Eur Child Adolesc Psychiatry. 2023 Oct;32(10):1909-1923. doi: 10.1007/s00787-022-01986-9. Epub 2022 Jun 10.
7
Robustness of Latent Profile Analysis to Measurement Noninvariance Between Profiles.
Educ Psychol Meas. 2022 Feb;82(1):5-28. doi: 10.1177/0013164421997896. Epub 2021 Mar 9.
8
Combined Approach to Multi-Informant Data Using Latent Factors and Latent Classes: Trifactor Mixture Model.
Educ Psychol Meas. 2021 Aug;81(4):728-755. doi: 10.1177/0013164420973722. Epub 2020 Nov 27.
9
Heterogeneity of borderline personality disorder symptoms in help-seeking adolescents.
Borderline Personal Disord Emot Dysregul. 2021 Feb 26;8(1):9. doi: 10.1186/s40479-021-00147-9.
10
Testing Measurement Invariance Across Unobserved Groups: The Role of Covariates in Factor Mixture Modeling.
Educ Psychol Meas. 2021 Feb;81(1):61-89. doi: 10.1177/0013164420925122. Epub 2020 May 28.

本文引用的文献

1
Distinguishing Between Latent Classes and Continuous Factors: Resolution by Maximum Likelihood?
Multivariate Behav Res. 2006 Dec 1;41(4):499-532. doi: 10.1207/s15327906mbr4104_4.
2
Investigating Spearman's Hypothesis by Means of Multi-Group Confirmatory Factor Analysis.
Multivariate Behav Res. 2000 Jan 1;35(1):21-50. doi: 10.1207/S15327906MBR3501_2.
3
Evaluation of structural equation mixture models Parameter estimates and correct class assignment.
Struct Equ Modeling. 2010 Apr 1;17(2):165-192. doi: 10.1080/10705511003659318.
4
Subtypes versus severity differences in attention-deficit/hyperactivity disorder in the Northern Finnish Birth Cohort.
J Am Acad Child Adolesc Psychiatry. 2007 Dec;46(12):1584-93. doi: 10.1097/chi.0b013e31815750dd.
6
Variation in the drinking trajectories of freshmen college students.
J Consult Clin Psychol. 2005 Apr;73(2):229-38. doi: 10.1037/0022-006X.73.2.229.
9
Finite mixture modeling with mixture outcomes using the EM algorithm.
Biometrics. 1999 Jun;55(2):463-9. doi: 10.1111/j.0006-341x.1999.00463.x.
10
Evaluation of ADHD typology in three contrasting samples: a latent class approach.
J Am Acad Child Adolesc Psychiatry. 1999 Jan;38(1):25-33. doi: 10.1097/00004583-199901000-00016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验