Suppr超能文献

吡唑啉配体与 N-杂环卡宾配体对同核三齿镧系(III)和铀(III)配合物慢磁弛豫的影响。

Influence of pyrazolate vs N-heterocyclic carbene ligands on the slow magnetic relaxation of homoleptic trischelate lanthanide(III) and uranium(III) complexes.

机构信息

Department of Chemistry, University of California , Berkeley, California 94720, United States.

出版信息

J Am Chem Soc. 2014 Apr 23;136(16):6056-68. doi: 10.1021/ja501569t. Epub 2014 Apr 7.

Abstract

Two isostructural series of trigonal prismatic complexes, M(Bp(Me))3 and M(Bc(Me))3 (M = Y, Tb, Dy, Ho, Er, U; Bp(Me) = dihydrobis(methypyrazolyl)borate; Bc(Me) = dihydrobis(methylimidazolyl)borate) are synthesized and fully characterized to examine the influence of ligand donor strength on slow magnetic relaxation. Investigation of the dynamic magnetic properties reveals that the oblate electron density distributions of the Tb(3+), Dy(3+), and U(3+) metal ions within the axial ligand field lead to slow relaxation upon application of a small dc magnetic field. Significantly, the magnetization relaxation is orders of magnitude slower for the N-heterocyclic carbene complexes, M(Bc(Me))3, than for the isomeric pyrazolate complexes, M(Bp(Me))3. Further, investigation of magnetically dilute samples containing 11-14 mol % of Tb(3+), Dy(3+), or U(3+) within the corresponding Y(3+) complex matrix reveals thermally activated relaxation is favored for the M(Bc(Me))3 complexes, even when dipolar interactions are largely absent. Notably, the dilute species U(Bc(Me))3 exhibits Ueff ≈ 33 cm(-1), representing the highest barrier yet observed for a U(3+) molecule demonstrating slow relaxation. Additional analysis through lanthanide XANES, X-band EPR, and (1)H NMR spectroscopies provides evidence that the origin of the slower relaxation derives from the greater magnetic anisotropy enforced within the strongly donating N-heterocyclic carbene coordination sphere. These results show that, like molecular symmetry, ligand-donating ability is a variable that can be controlled to the advantage of the synthetic chemist in the design of single-molecule magnets with enhanced relaxation barriers.

摘要

两个三角棱柱体结构的系列化合物,M(Bp(Me))3 和 M(Bc(Me))3(M=Y、Tb、Dy、Ho、Er、U;[Bp(Me)]-=二氢双(甲基吡唑基)硼酸盐;[Bc(Me)]-=二氢双(甲基咪唑基)硼酸盐)被合成并进行了全面的表征,以研究配体供体强度对缓慢磁弛豫的影响。动态磁性研究表明,轴向配体场中 Tb(3+)、Dy(3+)和 U(3+)金属离子的扁球体电子密度分布导致在施加小直流磁场时出现缓慢弛豫。值得注意的是,N-杂环卡宾配合物 M(Bc(Me))3 的磁化弛豫速度比异质吡唑配合物 M(Bp(Me))3 慢几个数量级。此外,对含有 11-14mol%的 Tb(3+)、Dy(3+)或 U(3+)的磁性稀释样品进行研究,发现磁稀释样品中热激活弛豫有利于 M(Bc(Me))3 配合物,即使在没有偶极相互作用的情况下也是如此。值得注意的是,稀物种 U(Bc(Me))3 表现出 Ueff≈33cm-1,这代表了迄今为止观察到的具有缓慢弛豫的 U(3+)分子的最高势垒。通过镧系元素 XANES、X 波段 EPR 和 (1)H NMR 光谱学的进一步分析提供了证据,表明弛豫速度较慢的原因是在强供电子 N-杂环卡宾配位球中强制施加的更大磁各向异性。这些结果表明,与分子对称性一样,配体供体能力是一个可以控制的变量,这有利于合成化学家在设计具有增强弛豫势垒的单分子磁体方面的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验