Nanobiology Laboratories, Protonic NanoMachine Group, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Quantitative Immunology Research Unit, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.
J Mol Biol. 2014 May 15;426(10):2082-97. doi: 10.1016/j.jmb.2014.03.006. Epub 2014 Mar 17.
Intrinsically disordered domains have been reported to play important roles in signal transduction networks by introducing cooperativity into protein-protein interactions. Unlike intrinsically disordered domains that become ordered upon binding, the EF-SAM domain in the stromal interaction molecule (STIM) 1 is distinct in that it is ordered in the monomeric state and partially unfolded in its oligomeric state, with the population of the two states depending on the local Ca(2+) concentration. The oligomerization of STIM1, which triggers extracellular Ca(2+) influx, exhibits cooperativity with respect to the local endoplasmic reticulum Ca(2+) concentration. Although the physiological importance of the oligomerization reaction is well established, the mechanism of the observed cooperativity is not known. Here, we examine the response of the STIM1 EF-SAM domain to changes in Ca(2+) concentration using mathematical modeling based on in vitro experiments. We find that the EF-SAM domain partially unfolds and dimerizes cooperatively with respect to Ca(2+) concentration, with Hill coefficients and half-maximal activation concentrations very close to the values observed in vivo for STIM1 redistribution and extracellular Ca(2+) influx. Our mathematical model of the dimerization reaction agrees quantitatively with our analytical ultracentrifugation-based measurements and previously published free energies of unfolding. A simple interpretation of these results is that Ca(2+) loss effectively acts as a denaturant, enabling cooperative dimerization and robust signal transduction. We present a structural model of the Ca(2+)-unbound EF-SAM domain that is consistent with a wide range of evidence, including resistance to proteolytic cleavage of the putative dimerization portion.
无规卷曲结构域被报道在信号转导网络中通过引入协同性到蛋白质-蛋白质相互作用中发挥重要作用。与结合后变得有序的无规卷曲结构域不同,基质相互作用分子(STIM)1 中的 EF-SAM 结构域是独特的,它在单体状态下是有序的,在寡聚状态下部分展开,两种状态的分布取决于局部 Ca(2+)浓度。STIM1 的寡聚化触发细胞外 Ca(2+)内流,对局部内质网 Ca(2+)浓度表现出协同性。尽管 STIM1 寡聚化反应的生理重要性已得到很好的证实,但观察到的协同性的机制尚不清楚。在这里,我们使用基于体外实验的数学建模来研究 STIM1 EF-SAM 结构域对 Ca(2+)浓度变化的响应。我们发现 EF-SAM 结构域部分展开并与 Ca(2+)浓度协同二聚化,Hill 系数和半最大激活浓度非常接近体内观察到的 STIM1 重分布和细胞外 Ca(2+)内流的数值。我们的二聚化反应数学模型与我们的分析超速离心法测量和先前发表的展开自由能定量一致。对这些结果的一种简单解释是,Ca(2+)损失有效地充当变性剂,使协同二聚化和稳健的信号转导成为可能。我们提出了一个与广泛证据一致的 Ca(2+)-未结合 EF-SAM 结构域的结构模型,包括对假定二聚化部分的蛋白水解切割的抗性。