Suppr超能文献

基于单目商品深度相机的虚拟试穿中的实时人体姿态和形状估计

Real-time Human Pose and Shape Estimation for Virtual Try-On Using a Single Commodity Depth Camera.

机构信息

University of Kentucky.

The Ohio State University.

出版信息

IEEE Trans Vis Comput Graph. 2014 Apr;20(4):550-9. doi: 10.1109/TVCG.2014.35.

Abstract

We present a system that allows the user to virtually try on new clothes. It uses a single commodity depth camera to capture the user in 3D. Both the pose and the shape of the user are estimated with a novel real-time template-based approach that performs tracking and shape adaptation jointly. The result is then used to drive realistic cloth simulation, in which the synthesized clothes are overlayed on the input image. The main challenge is to handle missing data and pose ambiguities due to the monocular setup, which captures less than 50 percent of the full body. Our solution is to incorporate automatic shape adaptation and novel constraints in pose tracking. The effectiveness of our system is demonstrated with a number of examples.

摘要

我们提出了一个系统,允许用户虚拟试穿新衣服。它使用单个商品深度相机以 3D 方式捕捉用户。用户的姿势和形状都使用一种新颖的实时基于模板的方法进行估计,该方法联合执行跟踪和形状适配。然后,将结果用于驱动逼真的布料模拟,其中合成的衣服叠加在输入图像上。主要的挑战是处理由于单目设置导致的缺失数据和姿势歧义,该设置仅捕获不到全身的 50%。我们的解决方案是在姿势跟踪中自动进行形状适配和新的约束。通过一些示例展示了我们系统的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验