Suppr超能文献

极性上皮细胞中向顶端和基底外侧膜的转运。

Trafficking to the apical and basolateral membranes in polarized epithelial cells.

机构信息

Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut.

Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut

出版信息

J Am Soc Nephrol. 2014 Jul;25(7):1375-86. doi: 10.1681/ASN.2013080883. Epub 2014 Mar 20.

Abstract

Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type-specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells.

摘要

为了执行其转运功能,肾上皮细胞必须在其顶膜和基底外侧膜中保持独特的蛋白质组成。这些极化蛋白分布的创建取决于分拣信号,这些信号指定了每种蛋白质的运输途径和最终功能位置。新合成的顶膜和基底外侧蛋白可以在反式高尔基体网络、再循环内体或沿着细胞运输途径的不断增加的一系列站点中分离成不同的载体小泡。特定分拣信号的性质以及其被解释的机制可以影响蛋白质在细胞中的运输途径。蛋白质的靶向基序在细胞类型上存在差异,如 Na,K-ATPase 所示,这表明其分拣途径具有显著的适应不同发育状态或生理需求的能力。这篇综述总结了我们目前对极化上皮细胞中顶膜和基底外侧转运途径的理解。

相似文献

1
Trafficking to the apical and basolateral membranes in polarized epithelial cells.
J Am Soc Nephrol. 2014 Jul;25(7):1375-86. doi: 10.1681/ASN.2013080883. Epub 2014 Mar 20.
2
Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells.
J Cell Biol. 2009 Jul 27;186(2):269-82. doi: 10.1083/jcb.200901021. Epub 2009 Jul 20.
3
Ion pump sorting in polarized renal epithelial cells.
Kidney Int. 2001 Aug;60(2):427-30. doi: 10.1046/j.1523-1755.2001.060002427.x.
4
Apical trafficking in epithelial cells: signals, clusters and motors.
J Cell Sci. 2009 Dec 1;122(Pt 23):4253-66. doi: 10.1242/jcs.032615.
5
Newly synthesized and recycling pools of the apical protein gp135 do not occupy the same compartments.
Traffic. 2016 Dec;17(12):1272-1285. doi: 10.1111/tra.12449. Epub 2016 Nov 1.
6
Four-dimensional live imaging of apical biosynthetic trafficking reveals a post-Golgi sorting role of apical endosomal intermediates.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4127-32. doi: 10.1073/pnas.1304168111. Epub 2014 Mar 3.
7
Taking the scenic route: biosynthetic traffic to the plasma membrane in polarized epithelial cells.
Traffic. 2009 Aug;10(8):972-81. doi: 10.1111/j.1600-0854.2009.00927.x. Epub 2009 May 12.
8
Polarized trafficking of the aquaporin-3 water channel is mediated by an NH2-terminal sorting signal.
Am J Physiol Cell Physiol. 2006 Jan;290(1):C298-304. doi: 10.1152/ajpcell.00356.2005. Epub 2005 Aug 31.
9
Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways.
Mol Biol Cell. 2009 Jan;20(1):481-97. doi: 10.1091/mbc.e08-08-0805. Epub 2008 Nov 12.
10
Structural and functional analysis of endosomal compartments in epithelial cells.
Methods Cell Biol. 2015;130:271-88. doi: 10.1016/bs.mcb.2015.06.019. Epub 2015 Jul 29.

引用本文的文献

1
1-Deoxysphingolipids dysregulate membrane properties and cargo trafficking in the early secretory pathway.
bioRxiv. 2025 May 17:2025.05.13.652513. doi: 10.1101/2025.05.13.652513.
2
Alternative splicing of uromodulin enhances mitochondrial metabolism for adaptation to stress in kidney epithelial cells.
J Clin Invest. 2025 Apr 8;135(12). doi: 10.1172/JCI183343. eCollection 2025 Jun 16.
3
Physiologic mechanisms underlying polycystic kidney disease.
Physiol Rev. 2025 Jul 1;105(3):1553-1607. doi: 10.1152/physrev.00018.2024. Epub 2025 Feb 12.
4
Nasal Mucociliary Epithelial Cell Culture Models for Studying Viral Infections.
Methods Mol Biol. 2025;2890:237-252. doi: 10.1007/978-1-0716-4326-6_13.
5
Molecular mechanisms of polarized transport to the apical plasma membrane.
Front Cell Dev Biol. 2024 Sep 26;12:1477173. doi: 10.3389/fcell.2024.1477173. eCollection 2024.
7
Role of protein domains in trafficking and localization of the voltage-gated sodium channel β2 subunit.
J Biol Chem. 2024 Nov;300(11):107833. doi: 10.1016/j.jbc.2024.107833. Epub 2024 Sep 28.
9
A size filter at the Golgi regulates apical membrane protein sorting.
Nat Cell Biol. 2024 Oct;26(10):1678-1690. doi: 10.1038/s41556-024-01500-0. Epub 2024 Sep 5.
10
Advances in uromodulin biology and potential clinical applications.
Nat Rev Nephrol. 2024 Dec;20(12):806-821. doi: 10.1038/s41581-024-00881-7. Epub 2024 Aug 19.

本文引用的文献

1
Culture of choroid plexus epithelial cells and in vitro model of blood-CSF barrier.
Methods Mol Biol. 2013;945:13-29. doi: 10.1007/978-1-62703-125-7_2.
2
Sialylation of N-linked glycans mediates apical delivery of endolyn in MDCK cells via a galectin-9-dependent mechanism.
Mol Biol Cell. 2012 Sep;23(18):3636-46. doi: 10.1091/mbc.E12-04-0329. Epub 2012 Aug 1.
3
Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access.
J Cell Biol. 2012 Jun 11;197(6):697-709. doi: 10.1083/jcb.201111146.
4
Arrivals and departures at the plasma membrane: direct and indirect transport routes.
Cell Tissue Res. 2013 Apr;352(1):5-20. doi: 10.1007/s00441-012-1409-5. Epub 2012 Apr 15.
5
The clathrin adaptor AP-1A mediates basolateral polarity.
Dev Cell. 2012 Apr 17;22(4):811-23. doi: 10.1016/j.devcel.2012.02.004.
7
Multiple biosynthetic trafficking routes for apically secreted proteins in MDCK cells.
Traffic. 2012 Mar;13(3):433-42. doi: 10.1111/j.1600-0854.2011.01315.x. Epub 2011 Dec 14.
8
Identification of a novel mono-leucine basolateral sorting motif within the cytoplasmic domain of amphiregulin.
Traffic. 2011 Dec;12(12):1793-804. doi: 10.1111/j.1600-0854.2011.01282.x. Epub 2011 Oct 13.
9
Mendelian disorders of membrane trafficking.
N Engl J Med. 2011 Sep 8;365(10):927-38. doi: 10.1056/NEJMra0910494.
10
The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling.
Mol Biol Cell. 2011 Aug 15;22(16):2924-36. doi: 10.1091/mbc.E11-04-0294. Epub 2011 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验