Lo Warrick K C, Cavigliasso Germán, Stranger Robert, Crowley James D, Blackman Allan G
Department of Chemistry, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand.
Inorg Chem. 2014 Apr 7;53(7):3595-605. doi: 10.1021/ic403089j. Epub 2014 Mar 21.
The reaction of Pt(N-N)2 [N-N = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (4,4'-Me2bpy)] with phosphine ligands [PPh3 or PPh(PhSO3)2(2-)] in aqueous or methanolic solutions was studied by multinuclear ((1)H, (13)C, (31)P, and (195)Pt) NMR spectroscopy, X-ray crystallography, UV-visible spectroscopy, and high-resolution mass spectrometry. NMR spectra of solutions containing equimolar amounts of Pt(N-N)2 and phosphine ligand give evidence for rapid formation of long-lived, 5-coordinate Pt(II)(N-N)2(phosphine) complexes. In the presence of excess phosphine ligand, these intermediates undergo much slower entry of a second phosphine ligand and loss of a bpy ligand to give Pt(II)(N-N)(phosphine)2 as the final product. The coordination of a phosphine ligand to the Pt(II) ion in the intermediate Pt(N-N)2(phosphine) complexes is supported by the observation of (31)P-(195)Pt coupling in the (31)P NMR spectra. The 5-coordinate nature of [Pt(bpy)2{PPh(PhSO3)2}] is confirmed by X-ray crystallography. X-ray crystal structural analysis shows that the Pt(II) ion in [Pt(bpy)2{PPh(PhSO3)2}]·5.5H2O displays a distorted square pyramidal geometry, with one bpy ligand bound asymmetrically. These results provide strong support for the widely accepted associative ligand substitution mechanism for square planar Pt(II) complexes. X-ray structural characterization of the distorted square planar complex Pt(bpy)(PPh3)22 confirms this as the final product of the reaction of Pt(bpy)2 with PPh3 in CD3OD. The results of density functional calculations on Pt(bpy)2, Pt(bpy)2(phosphine), and Pt(bpy)(phosphine)2 indicate that the bonding energy follows the trend of Pt(bpy)(phosphine)2 > Pt(bpy)2(phosphine) > Pt(bpy)2 for stability and that the formation reactions of Pt(bpy)2(phosphine) from Pt(bpy)2 and Pt(bpy)(phosphine)2 from Pt(bpy)2(phosphine) are energetically favorable. These calculations suggest that the driving force for the formation of Pt(bpy)(phosphine)2 from Pt(bpy)2 is the formation of a more energetically favorable product.
通过多核((^{1}H)、(^{13}C)、(^{31}P)和(^{195}Pt))核磁共振光谱、X射线晶体学、紫外可见光谱和高分辨率质谱研究了([Pt(N-N)_2]^{2 + })((N-N = 2,2'-联吡啶(bpy))或(4,4'-二甲基-2,2'-联吡啶(4,4'-Me_2bpy)))与膦配体([PPh_3)或(PPh(PhSO_3)_2^{2 - }])在水溶液或甲醇溶液中的反应。含有等摩尔量([Pt(N-N)_2]^{2 + })和膦配体的溶液的核磁共振光谱证明了长寿命的五配位([Pt(II)(N-N)_2(膦)]^{n + })配合物的快速形成。在过量膦配体存在下,这些中间体经历第二个膦配体的进入和一个bpy配体的损失要慢得多,最终产物为([Pt(II)(N-N)(膦)_2]^{n + })。在(^{31}P)核磁共振光谱中观察到(^{31}P - ^{195}Pt)偶合,支持了膦配体与中间体([Pt(N-N)_2(膦)]^{n + })配合物中的(Pt(II))离子配位。X射线晶体学证实了([Pt(bpy)_2{PPh(PhSO_3)_2}]的五配位性质。X射线晶体结构分析表明,([Pt(bpy)_2{PPh(PhSO_3)_2}]·5.5H_2O)中的(Pt(II))离子呈现扭曲的四方锥几何构型,一个bpy配体不对称结合。这些结果为广泛接受的平面正方形(Pt(II))配合物的缔合配体取代机制提供了有力支持。扭曲的平面正方形配合物(Pt(bpy)(PPh_3)_2_2)的X射线结构表征证实这是([Pt(bpy)_2]^{2 + })与(PPh_3)在(CD_3OD)中反应的最终产物。对([Pt(bpy)_2]^{2 + })、([Pt(bpy)_2(膦)]^{n + })和([Pt(bpy)(膦)_2]^{n + })的密度泛函计算结果表明,为了稳定性,键能遵循([Pt(bpy)(膦)_2]^{n + } > [Pt(bpy)_2(膦)]^{n + } > [Pt(bpy)_2]^{2 + })的趋势,并且从([Pt(bpy)_2]^{2 + })形成([Pt(bpy)_2(膦)]^{n + })以及从([Pt(bpy)_2(膦)]^{n + })形成([Pt(bpy)(膦)_2]^{n + })的形成反应在能量上是有利的。这些计算表明,从([Pt(bpy)_2]^{2 + })形成([Pt(bpy)(膦)_2]^{n + })的驱动力是形成能量上更有利的产物。