State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, Peking University , 209 Chengfu Road, Beijing 100871, China.
ACS Nano. 2014 Apr 22;8(4):3412-20. doi: 10.1021/nn4062353. Epub 2014 Mar 27.
Optimizing the electronic structures and carrier dynamics in semiconductors at atomic scale is an essential issue for innovative device applications. Besides the traditional chemical doping and the use of homo/heterostructures, elastic strain has been proposed as a promising possibility. Here, we report on the direct observation of the dynamics of exciton transport in a ZnO microwire under pure elastic bending deformation, by using cathodoluminescence with high temporal, spatial, and energy resolutions. We demonstrate that excitons can be effectively drifted by the strain gradient in inhomogeneous strain fields. Our observations are well reproduced by a drift-diffusion model taking into account the strain gradient and allow us to deduce an exciton mobility of 1400 ± 100 cm(2)/(eV s) in the ZnO wire. These results propose a way to tune the exciton dynamics in semiconductors and imply the possible role of strain gradient in optoelectronic and sensing nano/microdevices.
在原子尺度上优化半导体的电子结构和载流子动力学对于创新型器件应用至关重要。除了传统的化学掺杂和使用同质/异质结构外,弹性应变也被提出作为一种很有前途的可能性。在这里,我们通过使用具有高时间、空间和能量分辨率的阴极发光,直接观察到在纯弹性弯曲变形下 ZnO 微线中激子输运的动力学。我们证明激子可以在非均匀应变场中的应变梯度下有效漂移。我们的观察结果通过考虑应变梯度的漂移-扩散模型得到了很好的重现,并使我们能够推导出 ZnO 线中激子迁移率为 1400 ± 100 cm(2)/(eV s)。这些结果提出了一种在半导体中调节激子动力学的方法,并暗示了应变梯度在光电和传感纳米/微器件中的可能作用。