Liao Bo, Fu Xiangzheng, Cai Lijun, Chen Haowen
College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
Protein Pept Lett. 2014 Jul;21(7):688-95. doi: 10.2174/0929866521666140320111720.
Identifying protein complexes in protein-protein interaction (PPI) networks is a fundamental problem in computational biology. High-throughput experimental techniques have generated large, experimentally detected PPI datasets. These interactions represent a rich source of data that can be used to detect protein complexes; however, such interactions contain much noise. Therefore, these interactions should be validated before they could be applied to detect protein complexes. We propose an efficient measure to estimate PPI reliability (PPIR) and reduce noise level in two different yeast PPI networks. PPIRU, which is a new protein complex clustering algorithm based on PPIR, is introduced. Experiments demonstrated that interactome graph weighting methods incorporating PPIR clearly improve the results of several clustering algorithms. PPIR also outperforms other PPI graph weighting schemes in most cases. We compare PPIRU with several efficient, existing clustering algorithms and reveal that the accuracy values of PPIRU clusters are much higher than those of other algorithms.
在蛋白质-蛋白质相互作用(PPI)网络中识别蛋白质复合物是计算生物学中的一个基本问题。高通量实验技术已经生成了大量通过实验检测得到的PPI数据集。这些相互作用代表了丰富的数据来源,可用于检测蛋白质复合物;然而,此类相互作用包含大量噪声。因此,在将这些相互作用应用于检测蛋白质复合物之前,应对其进行验证。我们提出了一种有效的方法来估计PPI可靠性(PPIR)并降低两个不同酵母PPI网络中的噪声水平。引入了基于PPIR的新蛋白质复合物聚类算法PPIRU。实验表明,结合PPIR的相互作用组图加权方法明显改善了几种聚类算法的结果。在大多数情况下,PPIR也优于其他PPI图加权方案。我们将PPIRU与几种高效的现有聚类算法进行比较,发现PPIRU聚类的准确性值远高于其他算法。