Suppr超能文献

通过降低相互作用网络中的噪声来识别蛋白质复合物。

Identifying protein complexes by reducing noise in interaction networks.

作者信息

Liao Bo, Fu Xiangzheng, Cai Lijun, Chen Haowen

机构信息

College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.

出版信息

Protein Pept Lett. 2014 Jul;21(7):688-95. doi: 10.2174/0929866521666140320111720.

Abstract

Identifying protein complexes in protein-protein interaction (PPI) networks is a fundamental problem in computational biology. High-throughput experimental techniques have generated large, experimentally detected PPI datasets. These interactions represent a rich source of data that can be used to detect protein complexes; however, such interactions contain much noise. Therefore, these interactions should be validated before they could be applied to detect protein complexes. We propose an efficient measure to estimate PPI reliability (PPIR) and reduce noise level in two different yeast PPI networks. PPIRU, which is a new protein complex clustering algorithm based on PPIR, is introduced. Experiments demonstrated that interactome graph weighting methods incorporating PPIR clearly improve the results of several clustering algorithms. PPIR also outperforms other PPI graph weighting schemes in most cases. We compare PPIRU with several efficient, existing clustering algorithms and reveal that the accuracy values of PPIRU clusters are much higher than those of other algorithms.

摘要

在蛋白质-蛋白质相互作用(PPI)网络中识别蛋白质复合物是计算生物学中的一个基本问题。高通量实验技术已经生成了大量通过实验检测得到的PPI数据集。这些相互作用代表了丰富的数据来源,可用于检测蛋白质复合物;然而,此类相互作用包含大量噪声。因此,在将这些相互作用应用于检测蛋白质复合物之前,应对其进行验证。我们提出了一种有效的方法来估计PPI可靠性(PPIR)并降低两个不同酵母PPI网络中的噪声水平。引入了基于PPIR的新蛋白质复合物聚类算法PPIRU。实验表明,结合PPIR的相互作用组图加权方法明显改善了几种聚类算法的结果。在大多数情况下,PPIR也优于其他PPI图加权方案。我们将PPIRU与几种高效的现有聚类算法进行比较,发现PPIRU聚类的准确性值远高于其他算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验