Joint Quantum Institute and Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA and Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA.
Phys Rev Lett. 2014 Mar 7;112(9):095302. doi: 10.1103/PhysRevLett.112.095302. Epub 2014 Mar 6.
We consider the time evolution of the magnetization in a Rashba spin-orbit coupled Fermi gas, starting from a fully polarized initial state. We model the dynamics using a Boltzmann equation, which we solve in the Hartree-Fock approximation. The resulting nonlinear system of equations gives rise to three distinct dynamical regimes with qualitatively different asymptotic behaviors of the magnetization at long times. The distinct regimes and the transitions between them are controlled by the ratio of interaction and spin-orbit coupling strength λ: for small λ, the magnetization decays to zero. For intermediate λ, it displays undamped oscillations about zero, and for large λ, a partially magnetized state is dynamically stabilized. The dynamics we find is a spin analog of interaction induced self-trapping in double-well Bose Einstein condensates. The predicted phenomena can be realized in trapped Fermi gases with synthetic spin-orbit interactions.
我们研究了 Rashba 自旋轨道耦合费米气体中磁化强度的时间演化,从完全极化的初始状态开始。我们使用玻尔兹曼方程来模拟动力学,并用哈特ree-fock 近似来求解。所得的非线性方程组导致三个不同的动力学区域,在长时间内磁化强度的渐近行为具有定性差异。不同的区域及其之间的转变由相互作用和自旋轨道耦合强度 λ 的比值控制:对于小 λ,磁化强度衰减到零。对于中间的 λ,它在零附近显示出无阻尼的振荡,而对于大 λ,部分磁化状态被动态稳定。我们发现的动力学是双阱玻色爱因斯坦凝聚体中相互作用诱导自捕获的自旋类似物。预测的现象可以在具有合成自旋轨道相互作用的囚禁费米气体中实现。