Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic; Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C. Américo Vespucio No. 49, 41092 Sevilla, Spain.
Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic.
J Hazard Mater. 2014 Apr 30;271:185-95. doi: 10.1016/j.jhazmat.2014.02.019. Epub 2014 Feb 24.
In this paper, the decomposition reaction models and thermal hazard properties of 1,3,5-trinitro-1,3,5-triazinane (RDX) and its PBXs bonded by Formex P1, Semtex 1A, C4, Viton A and Fluorel polymer matrices have been investigated based on isoconversional and combined kinetic analysis methods. The established kinetic triplets are used to predict the constant decomposition rate temperature profiles, the critical radius for thermal explosion and isothermal behavior at a temperature of 82°C. It has been found that the effect of the polymer matrices on the decomposition mechanism of RDX is significant resulting in very different reaction models. The Formex P1, Semtex and C4 could make decomposition process of RDX follow a phase boundary controlled reaction mechanism, whereas the Viton A and Fluorel make its reaction model shifts to a two dimensional Avrami-Erofeev nucleation and growth model. According to isothermal simulations, the threshold cook-off time until loss of functionality at 82°C for RDX-C4 and RDX-FM is less than 500 days, while it is more than 700 days for the others. Unlike simulated isothermal curves, when considering the charge properties and heat of decomposition, RDX-FM and RDX-C4 are better than RDX-SE in storage safety at arbitrary surrounding temperature.
本文基于等转化率和组合动力学分析方法,研究了 1,3,5-三硝基-1,3,5-三嗪烷(RDX)及其与 Formex P1、Semtex 1A、C4、Viton A 和 Fluorel 聚合物基质结合的 PBX 的分解反应模型和热危害特性。所建立的动力学三参数用于预测恒温 82°C 下的恒分解速率温度曲线、热爆炸临界半径和等温行为。研究发现,聚合物基质对 RDX 分解机制的影响显著,导致反应模型非常不同。Formex P1、Semtex 和 C4 可使 RDX 的分解过程遵循相界面控制反应机制,而 Viton A 和 Fluorel 则使反应模型转变为二维 Avrami-Erofeev 成核和生长模型。根据等温模拟,在 82°C 下失去功能的 RDX-C4 和 RDX-FM 的触发时间阈值小于 500 天,而其他的则大于 700 天。与模拟等温曲线不同,当考虑装药性质和分解热时,在任意环境温度下,RDX-FM 和 RDX-C4 在存储安全性方面优于 RDX-SE。