Raatz Michael, Lipowsky Reinhard, Weikl Thomas R
Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Science Park Golm, 14424 Potsdam, Germany.
Soft Matter. 2014 May 28;10(20):3570-7. doi: 10.1039/c3sm52498a. Epub 2014 Mar 24.
The bioactivity of nanoparticles crucially depends on their ability to cross biomembranes. Recent simulations indicate the cooperative wrapping and internalization of spherical nanoparticles in tubular membrane structures. In this article, we systematically investigate the energy gain of this cooperative wrapping by minimizing the energies of the rotationally symmetric shapes of the membrane tubes and of membrane segments wrapping single particles. We find that the energy gain for the cooperative wrapping of nanoparticles in membrane tubes relative to their individual wrapping as single particles strongly depends on the ratio ρ/R of the particle radius R and the range ρ of the particle-membrane adhesion potential. For a potential range of the order of one nanometer, the cooperative wrapping in tubes is highly favorable for particles with a radius of tens of nanometers and intermediate adhesion energies, but not for particles that are significantly larger.
纳米颗粒的生物活性关键取决于它们穿越生物膜的能力。最近的模拟表明球形纳米颗粒在管状膜结构中的协同包裹和内化过程。在本文中,我们通过最小化膜管的旋转对称形状以及包裹单个颗粒的膜段的能量,系统地研究了这种协同包裹的能量增益。我们发现,相对于单个颗粒的单独包裹,纳米颗粒在膜管中的协同包裹的能量增益强烈依赖于颗粒半径R与颗粒-膜粘附势范围ρ的比值ρ/R。对于大约一纳米量级的势范围,管中的协同包裹对于半径为几十纳米且具有中等粘附能的颗粒非常有利,但对于明显更大的颗粒则不然。