Hubig Michael, Muggenthaler Holger, Mall Gita
Institute of Legal Medicine, Jena University Hospital - Friedrich Schiller University Jena, Germany.
Forensic Sci Int. 2014 May;238:53-8. doi: 10.1016/j.forsciint.2014.02.016. Epub 2014 Feb 27.
Bayesian estimation applied to temperature based death time estimation was recently introduced as conditional probability distribution or CPD-method by Biermann and Potente. The CPD-method is useful, if there is external information that sets the boundaries of the true death time interval (victim last seen alive and found dead). CPD allows computation of probabilities for small time intervals of interest (e.g. no-alibi intervals of suspects) within the large true death time interval. In the light of the importance of the CPD for conviction or acquittal of suspects the present study identifies a potential error source. Deviations in death time estimates will cause errors in the CPD-computed probabilities. We derive formulae to quantify the CPD error as a function of input error. Moreover we observed the paradox, that in cases, in which the small no-alibi time interval is located at the boundary of the true death time interval, adjacent to the erroneous death time estimate, CPD-computed probabilities for that small no-alibi interval will increase with increasing input deviation, else the CPD-computed probabilities will decrease. We therefore advise not to use CPD if there is an indication of an error or a contra-empirical deviation in the death time estimates, that is especially, if the death time estimates fall out of the true death time interval, even if the 95%-confidence intervals of the estimate still overlap the true death time interval.
贝叶斯估计应用于基于温度的死亡时间估计,最近由比尔曼和波滕特作为条件概率分布或CPD方法引入。如果有外部信息设定了真实死亡时间间隔(受害者最后一次被看到活着和被发现死亡)的边界,CPD方法就很有用。CPD允许在大的真实死亡时间间隔内计算感兴趣的小时间间隔(例如嫌疑人的无不在场证明间隔)的概率。鉴于CPD对嫌疑人定罪或无罪释放的重要性,本研究确定了一个潜在的误差来源。死亡时间估计的偏差将导致CPD计算概率中的误差。我们推导公式以量化作为输入误差函数的CPD误差。此外,我们观察到一个悖论,即在小的无不在场证明时间间隔位于真实死亡时间间隔的边界且与错误的死亡时间估计相邻的情况下,该小无不在场证明间隔的CPD计算概率将随着输入偏差的增加而增加,否则CPD计算概率将降低。因此,我们建议,如果死亡时间估计存在误差迹象或反经验偏差,特别是如果死亡时间估计超出真实死亡时间间隔,即使估计的95%置信区间仍与真实死亡时间间隔重叠,也不要使用CPD。