文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微波辅助化学:快速组装纳米材料和有机化合物的合成应用。

Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.

机构信息

Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University , Slechtitelu 11, 783 71, Olomouc, Czech Republic.

出版信息

Acc Chem Res. 2014 Apr 15;47(4):1338-48. doi: 10.1021/ar400309b. Epub 2014 Mar 25.


DOI:10.1021/ar400309b
PMID:24666323
Abstract

The magic of microwave (MW) heating technique, termed the Bunsen burner of the 21st century, has emerged as a valuable alternative in the synthesis of organic compounds, polymers, inorganic materials, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare catalytic materials or nanomaterials and desired organic molecules, selectively, in almost quantitative yields and with greater precision than using conventional heating. By controlling the specific MW parameters (temperature, pressure, and ramping of temperature) and choice of solvents, researchers can now move into the next generation of advanced nanomaterial design and development. Microwave-assisted chemical reactions are now well-established practices in the laboratory setting although some controversy lingers as to how MW irradiation is able to enhance or influence the outcome of chemical reactions. Much of the discussion has focused on whether the observed effects can, in all instances, be rationalized by purely thermal Arrhenius-based phenomena (thermal microwave effects), that is, the importance of the rapid heating and high bulk reaction temperatures that are achievable using MW dielectric heating in sealed reaction vessels, or whether these observations can be explained by so-called "nonthermal" or "specific microwave" effects. In recent years, innovative and significant advances have occurred in MW hardware development to help delineate MW effects, especially the use of silicon carbide (SiC) reaction vessels and the accurate measurement of temperature using fiber optic (FO) temperature probes. SiC reactors appear to be good alternatives to MW transparent borosilicate glass, because of their high microwave absorptivity, and as such they serve as valuable tools to demystify the claimed magical MW effects. This enables one to evaluate the influence of the electromagnetic field on the specific chemical reactions, under truly identical conventional heating conditions, wherein temperature is measured accurately by fiber optic (FO) probe. This Account describes the current status of MW-assisted synthesis highlighting the introduction of various prototypes of equipment, classes of organic reactions pursued using nanomaterials, and the synthesis of unique and multifunctional nanomaterials; the ensuing nanomaterials possess zero-dimensional to three-dimensional shapes, such as spherical, hexagonal, nanoprisms, star shapes, and nanorods. The synthesis of well-defined nanomaterials and nanocatalysts is an integral part of nanotechnology and catalysis science, because it is imperative to control their size, shape, and compositional engineering for unique deployment in the field of nanocatalysis and organic synthesis. MW-assisted methods have been employed for the convenient and reproducible synthesis of well-defined noble and transition core-shell metallic nanoparticles with tunable shell thicknesses. Some of the distinctive attributes of MW-selective heating in the synthesis and applications of magnetic nanocatalysts in organic synthesis under benign reaction conditions are highlighted. Sustainable nanomaterials and their applications in benign media are an ideal blend for the development of greener methodologies in organic synthesis; MW heating provides superb value to the overall sustainable process development via process intensification including the flow systems.

摘要

微波(MW)加热技术的神奇之处,被誉为 21 世纪的本生灯,已成为有机化合物、聚合物、无机材料和纳米材料合成的一种有价值的替代方法。MW 辅助化学的重要创新使化学家能够更精确、选择性地制备催化材料或纳米材料和所需的有机分子,几乎以定量产率,而且比使用传统加热的方法更加精确。通过控制特定的 MW 参数(温度、压力和温度的上升)和溶剂的选择,研究人员现在可以进入下一代先进纳米材料的设计和开发。微波辅助化学反应现在已经在实验室中得到了很好的确立,尽管仍然存在一些争议,即 MW 辐射如何能够增强或影响化学反应的结果。大部分讨论都集中在观察到的效应是否可以通过纯粹的热阿伦尼乌斯(Arrhenius)现象(热微波效应)来合理化,也就是说,在密封反应容器中使用 MW 介电加热实现快速加热和高体积反应温度的重要性,或者这些观察结果是否可以通过所谓的“非热”或“特定微波”效应来解释。近年来,MW 硬件的发展发生了创新性和重大的进步,有助于阐明 MW 效应,特别是使用碳化硅(SiC)反应容器和使用光纤(FO)温度探头准确测量温度。由于 SiC 反应器具有高的微波吸收率,因此它们似乎是 MW 透明硼硅酸盐玻璃的良好替代品,因此它们是揭开所谓神奇 MW 效应的有用工具。这使得人们可以在真正相同的常规加热条件下,评估电磁场对特定化学反应的影响,其中通过光纤(FO)探头准确测量温度。本综述描述了 MW 辅助合成的现状,强调了各种设备原型的引入、使用纳米材料进行的有机反应类别以及独特多功能纳米材料的合成;所得纳米材料具有零维到三维的形状,例如球形、六方形状、纳米棱柱形状、星形和纳米棒形状。纳米材料和纳米催化剂的合成是纳米技术和催化科学的一个组成部分,因为控制其尺寸、形状和组成工程对于在纳米催化和有机合成领域的独特应用至关重要。MW 辅助方法已被用于方便且可重复地合成具有可调厚度的壳层的定义明确的贵金属和过渡核壳金属纳米粒子。突出了 MW 选择性加热在有机合成中在温和反应条件下合成和应用磁性纳米催化剂的一些独特属性。在良性介质中使用可持续纳米材料及其应用是开发有机合成中绿色方法的理想组合;MW 加热通过包括流动系统在内的过程强化为整个可持续过程开发提供了巨大的价值。

相似文献

[1]
Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.

Acc Chem Res. 2014-3-25

[2]
Microwave-assisted organic synthesis and transformations using benign reaction media.

Acc Chem Res. 2008-5

[3]
Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.

Acc Chem Res. 2013-3-6

[4]
Microwave-assisted green synthesis of silver nanostructures.

Acc Chem Res. 2011-4-28

[5]
Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors.

Chemistry. 2010-10-25

[6]
Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators.

J Org Chem. 2008-8-15

[7]
Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.

J Org Chem. 2008-1-4

[8]
Microwave-specific acceleration of a Friedel-Crafts reaction: evidence for selective heating in homogeneous solution.

J Org Chem. 2014-8-15

[9]
Silicon carbide passive heating elements in microwave-assisted organic synthesis.

J Org Chem. 2006-6-9

[10]
Microwave-assisted synthesis of colloidal inorganic nanocrystals.

Angew Chem Int Ed Engl. 2011-11-4

引用本文的文献

[1]
Greener alternatives for synthesis of isoquinoline and its derivatives: a comparative review of eco-compatible synthetic routes.

RSC Adv. 2025-8-26

[2]
Hybrid Molecules with Purine and Pyrimidine Derivatives for Antitumor Therapy: News, Perspectives, and Future Directions.

Molecules. 2025-6-23

[3]
Photopolymerization of Styrene-Naphthalenediimide Monomer: Formation of Pattern and Electrochromism.

Int J Mol Sci. 2025-5-17

[4]
Microwaves in clean energy technologies.

Philos Trans A Math Phys Eng Sci. 2025-5-22

[5]
CdS/CeO/AgCO nanocomposite as an efficient heterogeneous catalyst for Knoevenagel condensation and acetylation reactions.

Sci Rep. 2025-5-21

[6]
Pyrrole dicarboxylate substituted porphyrazine, microwave assisted synthesis and properties.

Sci Rep. 2025-5-14

[7]
Synthesis of Imidazolidin-2-ones from -(,)-Diaminocyclohexane: A Statistical Analysis-Based Pseudo-Multicomponent Protocol.

Molecules. 2025-3-22

[8]
Infrared Irradiation-Assisted Green Approach for Pd-Catalyzed Buchwald-Hartwig Amination.

Chemistry. 2025-5-14

[9]
Microwave-Heating-Assisted Synthesis of Ultrathin and Ultralong Hydroxyapatite Nanowires Using Biogenic Creatine Phosphate and Their Derived Flexible Bio-Paper with Drug Delivery Function.

Molecules. 2025-2-21

[10]
Microwave-assisted reductive homocoupling of aromatic nitro monomers: synthesis of azo-linked porous organic polymers for CO capture.

RSC Adv. 2025-3-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索