Hefford Samuel, Barter Michael, Azam M Usman, Singh Bhupinder, Dimitrakis Georgios, Jie Xiangyu, Edwards Peter, Slocombe Daniel R
Cardiff University, Cardiff, UK.
University of Nottingham, Nottingham, UK.
Philos Trans A Math Phys Eng Sci. 2025 May 22;383(2297):20240394. doi: 10.1098/rsta.2024.0394.
Energy in the microwave spectrum is increasingly applied in clean energy technologies. This review discusses recent innovations using microwave fields in hydrogen production and synthesis of new battery materials, highlighting the unique properties of microwave heating. Key innovations include microwave-assisted hydrogen generation from water, hydrocarbons and ammonia and the synthesis of high-performance anode and cathode materials. Microwave-assisted catalytic water splitting using Gd-doped ceria achieves efficient hydrogen production below 250°C. For hydrocarbons, advanced microwave-active catalysts Fe-Ni alloys and ruthenium nanoparticles enable high conversion rates and hydrogen yields. In ammonia synthesis, microwaves reduce the energy demands of the Haber-Bosch process and enhance hydrogen production efficiency using catalysts such as ruthenium and CoMoN. In battery technology, microwave-assisted synthesis of cathode materials like LiFePO and LiNiMnO yields high-purity materials with superior electrochemical performance. Developing nanostructured and composite materials, including graphene-based anodes, significantly improves battery capacities and cycling stability. The ability of microwave technology to provide rapid, selective heating and enhance reaction rates offers significant advancements in clean energy technologies. Ongoing research continues to bridge theoretical understanding and practical applications, driving further innovations in this field. This review aims to highlight recent advances in clean energy technologies based upon the novel use of microwave energy. The potential impact of these emerging applications is now being fully understood in areas that are critical to achieving net zero and can contribute to the decarbonization of key sectors. Notable in this landscape are the sectors of hydrogen fuel and battery technologies. This review examines the role of microwaves in these areas.This article is part of the discussion meeting issue 'Microwave science in sustainability'.
微波光谱中的能量越来越多地应用于清洁能源技术。本综述讨论了利用微波场在制氢和新型电池材料合成方面的最新创新,突出了微波加热的独特特性。关键创新包括微波辅助从水、碳氢化合物和氨中制氢以及高性能阳极和阴极材料的合成。使用钆掺杂二氧化铈的微波辅助催化水分解在250°C以下实现了高效制氢。对于碳氢化合物,先进的微波活性催化剂铁镍合金和钌纳米颗粒可实现高转化率和氢气产率。在氨合成中,微波降低了哈伯-博施工艺的能源需求,并使用钌和CoMoN等催化剂提高了制氢效率。在电池技术方面,微波辅助合成LiFePO和LiNiMnO等阴极材料可得到具有优异电化学性能的高纯度材料。开发包括基于石墨烯的阳极在内的纳米结构和复合材料,可显著提高电池容量和循环稳定性。微波技术提供快速、选择性加热并提高反应速率的能力在清洁能源技术方面带来了重大进展。正在进行的研究继续弥合理论理解与实际应用之间的差距,推动该领域的进一步创新。本综述旨在突出基于微波能量新应用的清洁能源技术的最新进展。这些新兴应用在实现净零排放至关重要的领域的潜在影响目前正在得到充分认识,并可为关键部门的脱碳做出贡献。在这一领域中值得注意的是氢燃料和电池技术领域。本综述探讨了微波在这些领域中的作用。本文是“可持续性中的微波科学”讨论会议专题的一部分。