Suppr超能文献

拟南芥AtCHR23染色质重塑ATP酶的过表达导致生长和基因表达的变异性增加。

Over-expression of Arabidopsis AtCHR23 chromatin remodeling ATPase results in increased variability of growth and gene expression.

作者信息

Folta Adam, Severing Edouard I, Krauskopf Julian, van de Geest Henri, Verver Jan, Nap Jan-Peter, Mlynarova Ludmila

机构信息

Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.

出版信息

BMC Plant Biol. 2014 Mar 25;14:76. doi: 10.1186/1471-2229-14-76.

Abstract

BACKGROUND

Plants are sessile organisms that deal with their -sometimes adverse- environment in well-regulated ways. Chromatin remodeling involving SWI/SNF2-type ATPases is thought to be an important epigenetic mechanism for the regulation of gene expression in different developmental programs and for integrating these programs with the response to environmental signals. In this study, we report on the role of chromatin remodeling in Arabidopsis with respect to the variability of growth and gene expression in relationship to environmental conditions.

RESULTS

Already modest (2-fold) over-expression of the AtCHR23 ATPase gene in Arabidopsis results in overall reduced growth compared to the wild-type. Detailed analyses show that in the root, the reduction of growth is due to reduced cell elongation. The reduced-growth phenotype requires sufficient light and is magnified by applying deliberate abiotic (salt, osmotic) stress. In contrast, the knockout mutation of AtCHR23 does not lead to such visible phenotypic effects. In addition, we show that over-expression of AtCHR23 increases the variability of growth in populations of genetically identical plants. These data indicate that accurate and controlled expression of AtCHR23 contributes to the stability or robustness of growth. Detailed RNAseq analyses demonstrate that upon AtCHR23 over-expression also the variation of gene expression is increased in a subset of genes that associate with environmental stress. The larger variation of gene expression is confirmed in individual plants with the help of independent qRT-PCR analysis.

CONCLUSIONS

Over-expression of AtCHR23 gives Arabidopsis a phenotype that is markedly different from the growth arrest phenotype observed upon over-expression of AtCHR12, the paralog of AtCHR23, in response to abiotic stress. This demonstrates functional sub-specialization of highly similar ATPases in Arabidopsis. Over-expression of AtCHR23 increases the variability of growth among genetically identical individuals in a way that is consistent with increased variability of expression of a distinct subset of genes that associate with environmental stress. We propose that ATCHR23-mediated chromatin remodeling is a potential component of a buffer system in plants that protects against environmentally-induced phenotypic and transcriptional variation.

摘要

背景

植物是固着生物,它们以调控良好的方式应对有时不利的环境。涉及SWI/SNF2型ATP酶的染色质重塑被认为是一种重要的表观遗传机制,用于调控不同发育程序中的基因表达,并将这些程序与对环境信号的响应整合起来。在本研究中,我们报告了拟南芥中染色质重塑在与环境条件相关的生长和基因表达变异性方面的作用。

结果

在拟南芥中,AtCHR23 ATP酶基因仅适度(2倍)过表达就导致与野生型相比整体生长减少。详细分析表明,在根部,生长减少是由于细胞伸长减少。生长减少的表型需要充足的光照,并通过施加人为的非生物(盐、渗透)胁迫而加剧。相反,AtCHR23的敲除突变不会导致这种明显的表型效应。此外,我们表明AtCHR23的过表达增加了基因相同的植物群体中生长的变异性。这些数据表明,AtCHR23的精确和受控表达有助于生长的稳定性或稳健性。详细的RNAseq分析表明,在AtCHR23过表达时,与环境胁迫相关的一部分基因的表达变异也增加。借助独立的qRT-PCR分析,在个体植物中证实了基因表达的更大变异。

结论

AtCHR23的过表达赋予拟南芥一种与AtCHR23的旁系同源物AtCHR12在非生物胁迫下过表达时观察到的生长停滞表型明显不同的表型。这证明了拟南芥中高度相似的ATP酶的功能亚专业化。AtCHR23的过表达以与与环境胁迫相关的不同基因子集的表达变异性增加一致的方式增加了基因相同个体之间生长的变异性。我们提出,ATCHR23介导的染色质重塑是植物缓冲系统的一个潜在组成部分,可防止环境诱导的表型和转录变异。

相似文献

2
Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.
Physiol Plant. 2015 Feb;153(2):318-26. doi: 10.1111/ppl.12231. Epub 2014 Jun 27.
4
Compact tomato seedlings and plants upon overexpression of a tomato chromatin remodelling ATPase gene.
Plant Biotechnol J. 2016 Feb;14(2):581-91. doi: 10.1111/pbi.12400. Epub 2015 May 14.
10
Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED.
Plant Cell. 2007 Feb;19(2):403-16. doi: 10.1105/tpc.106.048272. Epub 2007 Feb 9.

引用本文的文献

1
Plant BCL-DOMAIN HOMOLOG proteins play a conserved role in SWI/SNF complex stability.
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2413346122. doi: 10.1073/pnas.2413346122. Epub 2025 Jan 17.
2
Plant BCL-Domain Homologues play a conserved role in SWI/SNF complex stability.
bioRxiv. 2024 Sep 19:2024.09.17.612632. doi: 10.1101/2024.09.17.612632.
3
DRMY1 promotes robust morphogenesis in Arabidopsis by sustaining the translation of cytokinin-signaling inhibitor proteins.
Dev Cell. 2024 Dec 2;59(23):3141-3160.e7. doi: 10.1016/j.devcel.2024.08.010. Epub 2024 Sep 20.
4
Tradeoff between speed and robustness in primordium initiation mediated by auxin-CUC1 interaction.
Nat Commun. 2024 Jul 13;15(1):5911. doi: 10.1038/s41467-024-50172-9.
5
A review of the potential involvement of small RNAs in transgenerational abiotic stress memory in plants.
Funct Integr Genomics. 2024 Apr 11;24(2):74. doi: 10.1007/s10142-024-01354-7.
6
Tradeoff Between Speed and Robustness in Primordium Initiation Mediated by Auxin-CUC1 Interaction.
bioRxiv. 2024 May 30:2023.11.30.569401. doi: 10.1101/2023.11.30.569401.
7
Role of Chromatin Architecture in Plant Stress Responses: An Update.
Front Plant Sci. 2021 Jan 12;11:603380. doi: 10.3389/fpls.2020.603380. eCollection 2020.
9
Widespread inter-individual gene expression variability in .
Mol Syst Biol. 2019 Jan 24;15(1):e8591. doi: 10.15252/msb.20188591.
10
Chromatin-Based Regulation of Plant Root Development.
Front Plant Sci. 2018 Oct 16;9:1509. doi: 10.3389/fpls.2018.01509. eCollection 2018.

本文引用的文献

1
Snf2 family gene distribution in higher plant genomes reveals DRD1 expansion and diversification in the tomato genome.
PLoS One. 2013 Nov 28;8(11):e81147. doi: 10.1371/journal.pone.0081147. eCollection 2013.
3
Molecular mechanisms of robustness in plants.
Curr Opin Plant Biol. 2013 Feb;16(1):62-9. doi: 10.1016/j.pbi.2012.12.002. Epub 2012 Dec 30.
4
Differential analysis of gene regulation at transcript resolution with RNA-seq.
Nat Biotechnol. 2013 Jan;31(1):46-53. doi: 10.1038/nbt.2450. Epub 2012 Dec 9.
6
Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14746-53. doi: 10.1073/pnas.1207726109. Epub 2012 Aug 20.
7
Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11217-21. doi: 10.1073/pnas.1203746109. Epub 2012 Jun 25.
8
Model Misinterpretation within Biology: Phenotypes, Statistics, Networks, and Inference.
Front Plant Sci. 2012 Jan 31;3:13. doi: 10.3389/fpls.2012.00013. eCollection 2012.
9
Single-cell analysis in biotechnology, systems biology, and biocatalysis.
Annu Rev Chem Biomol Eng. 2012;3:129-55. doi: 10.1146/annurev-chembioeng-062011-081056. Epub 2012 Mar 8.
10
Gene overexpression: uses, mechanisms, and interpretation.
Genetics. 2012 Mar;190(3):841-54. doi: 10.1534/genetics.111.136911.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验