Am J Epidemiol. 2014 Apr 15;179(8):1018-24. doi: 10.1093/aje/kwu017. Epub 2014 Mar 4.
In environmental epidemiology, measurements of exposure biomarkers often fall below the assay's limit of detection. Existing methods for handling this problem, including deletion, substitution, parametric regression, and multiple imputation, can perform poorly if the proportion of "nondetects" is high or parametric models are mis-specified. We propose an approach that treats the measured analyte as the modeled outcome, implying a role reversal when the analyte is a putative cause of a health outcome. Following a scale reversal as well, our approach uses Cox regression to model the analyte, with confounder adjustment. The method makes full use of quantifiable analyte measures, while appropriately treating nondetects as censored. Under the proportional hazards assumption, the hazard ratio for a binary health outcome is interpretable as an adjusted odds ratio: the odds for the outcome at any particular analyte concentration divided by the odds given a lower concentration. Our approach is broadly applicable to cohort studies, case-control studies (frequency matched or not), and cross-sectional studies conducted to identify determinants of exposure. We illustrate the method with cross-sectional survey data to assess sex as a determinant of 2,3,7,8-tetrachlorodibenzo-p-dioxin concentration and with prospective cohort data to assess the association between 2,4,4'-trichlorobiphenyl exposure and psychomotor development.
在环境流行病学中,暴露生物标志物的测量值经常低于检测方法的检测极限。现有的处理这个问题的方法,包括删除、替代、参数回归和多重插补,如果“未检出”的比例较高或参数模型指定不当,可能会表现不佳。我们提出了一种方法,将测量的分析物视为模型的结果,如果分析物是健康结果的潜在原因,则意味着角色发生了逆转。在进行了比例反转后,我们的方法使用 Cox 回归来对分析物进行建模,并进行混杂因素调整。该方法充分利用了可量化的分析物测量值,同时将未检出值视为删失值进行适当处理。在比例风险假设下,二元健康结果的风险比可以解释为调整后的优势比:特定分析物浓度下的结果优势比除以给定较低浓度下的优势比。我们的方法广泛适用于队列研究、病例对照研究(频率匹配或不匹配)和横断面研究,用于确定暴露的决定因素。我们用横断面调查数据来说明该方法,以评估性别是否是 2,3,7,8-四氯二苯并对二恶英浓度的决定因素,并使用前瞻性队列数据来评估 2,4,4'-三氯联苯暴露与精神运动发育之间的关联。