Suppr超能文献

条件性敲除 Raptor 或 Rictor 对少突胶质细胞分化和中枢神经系统髓鞘形成有不同的影响。

Conditional ablation of raptor or rictor has differential impact on oligodendrocyte differentiation and CNS myelination.

机构信息

Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, and Department of Neurology and Neuroscience, New Jersey Medical School Cancer Center, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103.

出版信息

J Neurosci. 2014 Mar 26;34(13):4466-80. doi: 10.1523/JNEUROSCI.4314-13.2014.

Abstract

During CNS development, oligodendrocytes, the myelinating glia of the CNS, progress through multiple transitory stages before terminating into fully mature cells. Oligodendrocyte differentiation and myelination is a tightly regulated process requiring extracellular signals to converge to elicit specific translational and transcriptional changes. Our lab has previously shown that the protein kinases, Akt and mammalian Target of Rapamycin (mTOR), are important regulators of CNS myelination in vivo. mTOR functions through two distinct complexes, mTOR complex 1 (mTORC1) and mTORC2, by binding to either Raptor or Rictor, respectively. To establish whether the impact of mTOR on CNS myelination results from unique functions of mTORC1 or mTORC2 during CNS myelination, we conditionally ablated either Raptor or Rictor in the oligodendrocyte lineage, in vivo. We show that Raptor (mTORC1) is a positive regulator of developmental CNS mouse myelination when mTORC2 is functional, whereas Rictor (mTORC2) ablation has a modest positive effect on oligodendrocyte differentiation, and very little effect on myelination, when mTORC1 is functional. Also, we show that loss of Raptor in oligodendrocytes results in differential dysmyelination in specific areas of the CNS, with the greatest impact on spinal cord myelination.

摘要

在中枢神经系统 (CNS) 发育过程中,少突胶质细胞作为 CNS 的髓鞘形成胶质细胞,在终末分化为完全成熟的细胞之前,会经历多个过渡阶段。少突胶质细胞分化和髓鞘形成是一个严格调控的过程,需要细胞外信号汇聚以引发特定的翻译和转录变化。我们实验室之前已经表明,蛋白激酶 Akt 和哺乳动物雷帕霉素靶蛋白 (mTOR) 是体内 CNS 髓鞘形成的重要调节因子。mTOR 通过与 Raptor 或 Rictor 分别结合,分别发挥两个不同的复合物 mTOR 复合物 1 (mTORC1) 和 mTOR 复合物 2 (mTORC2) 的功能。为了确定 mTOR 对 CNS 髓鞘形成的影响是否源自 mTORC1 或 mTORC2 在 CNS 髓鞘形成过程中的独特功能,我们在体内条件性敲除少突胶质细胞谱系中的 Raptor 或 Rictor。我们表明,在 mTORC2 功能正常的情况下,Raptor(mTORC1)是发育中的 CNS 小鼠髓鞘形成的正调节剂,而当 mTORC1 功能正常时,Rictor(mTORC2)敲除对少突胶质细胞分化有适度的正影响,但对髓鞘形成的影响很小。此外,我们表明,少突胶质细胞中 Raptor 的缺失会导致 CNS 特定区域的脱髓鞘出现差异,对脊髓髓鞘形成的影响最大。

相似文献

引用本文的文献

2
Demyelination and Remyelination: General Principles.脱髓鞘与再髓鞘化:一般原则
Adv Neurobiol. 2025;43:207-255. doi: 10.1007/978-3-031-87919-7_9.
3
Development of Oligodendroglia and Myelin.少突胶质细胞与髓鞘的发育
Adv Neurobiol. 2025;43:61-79. doi: 10.1007/978-3-031-87919-7_3.
9
The role of TSC1 and TSC2 proteins in neuronal axons.TSC1 和 TSC2 蛋白在神经元轴突中的作用。
Mol Psychiatry. 2024 Apr;29(4):1165-1178. doi: 10.1038/s41380-023-02402-7. Epub 2024 Jan 11.

本文引用的文献

4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验