Suppr超能文献

基于目标的初级运动皮层快速反馈响应的调制。

Goal-dependent modulation of fast feedback responses in primary motor cortex.

机构信息

Centre for Neuroscience Studies, Departments of Biomedical and Molecular Sciences, and Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada, and Department of Integrative Medical Biology, Physiology Section, Umeå University, SE-90187 Umeå, Sweden.

出版信息

J Neurosci. 2014 Mar 26;34(13):4608-17. doi: 10.1523/JNEUROSCI.4520-13.2014.

Abstract

Many human studies have demonstrated that rapid motor responses (i.e., muscle-stretch reflexes) to mechanical perturbations can be modified by a participant's intended response. Here, we used a novel experimental paradigm to investigate the neural mechanisms that underlie such goal-dependent modulation. Two monkeys positioned their hand in a central area against a constant load and responded to mechanical perturbations by quickly placing their hand into visually defined spatial targets. The perturbation was chosen to excite a particular proximal arm muscle or isolated neuron in primary motor cortex and two targets were placed so that the hand was pushed away from one target (OUT target) and toward the other (IN target). We chose these targets because they produced behavioral responses analogous to the classical verbal instructions used in human studies. A third centrally located target was used to examine responses with a constant goal. Arm muscles and neurons robustly responded to the perturbation and showed clear goal-dependent responses ∼35 and 70 ms after perturbation onset, respectively. Most M1 neurons and all muscles displayed larger perturbation-related responses for the OUT target than the IN target. However, a substantial number of M1 neurons showed more complex patterns of target-dependent modulation not seen in muscles, including greater activity for the IN target than the OUT target, and changes in target preference over time. Together, our results reveal complex goal-dependent modulation of fast feedback responses in M1 that are present early enough to account for goal-dependent stretch responses in arm muscles.

摘要

许多人类研究已经证明,快速运动反应(即肌肉拉伸反射)可以通过参与者的预期反应来改变。在这里,我们使用一种新的实验范式来研究这种基于目标的调制所依赖的神经机制。两只猴子将手放在中央区域,抵抗恒定的负荷,然后通过快速将手放入视觉定义的空间目标来响应机械干扰。选择这种干扰来激发初级运动皮层中的特定近端手臂肌肉或孤立神经元,并且放置两个目标,以便手被推向一个目标(OUT 目标)和另一个目标(IN 目标)。我们选择这些目标是因为它们产生的行为反应类似于人类研究中使用的经典口头指令。第三个位于中央的目标用于检查具有恒定目标的反应。手臂肌肉和神经元对干扰有强烈的反应,分别在干扰开始后约 35 和 70 毫秒出现明显的基于目标的反应。大多数 M1 神经元和所有肌肉对 OUT 目标的干扰相关反应都大于 IN 目标。然而,大量的 M1 神经元表现出比肌肉更复杂的目标依赖调制模式,包括对 IN 目标的活动大于 OUT 目标,以及随着时间的推移目标偏好的变化。总之,我们的结果揭示了 M1 中快速反馈反应的复杂基于目标的调制,这些调制足以解释手臂肌肉的基于目标的拉伸反应。

相似文献

1
Goal-dependent modulation of fast feedback responses in primary motor cortex.
J Neurosci. 2014 Mar 26;34(13):4608-17. doi: 10.1523/JNEUROSCI.4520-13.2014.
2
Perturbation-evoked responses in primary motor cortex are modulated by behavioral context.
J Neurophysiol. 2014 Dec 1;112(11):2985-3000. doi: 10.1152/jn.00270.2014. Epub 2014 Sep 10.
3
Comparison of neural responses in primary motor cortex to transient and continuous loads during posture.
J Neurophysiol. 2009 Jan;101(1):150-63. doi: 10.1152/jn.90230.2008. Epub 2008 Nov 12.
4
Long-latency Responses to a Mechanical Perturbation of the Index Finger Have a Spinal Component.
J Neurosci. 2020 May 13;40(20):3933-3948. doi: 10.1523/JNEUROSCI.1901-19.2020. Epub 2020 Apr 3.
5
Primary motor cortex neurons classified in a postural task predict muscle activation patterns in a reaching task.
J Neurophysiol. 2016 Apr;115(4):2021-32. doi: 10.1152/jn.00971.2015. Epub 2016 Feb 3.
6
Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex.
J Neurophysiol. 1997 Mar;77(3):1171-94. doi: 10.1152/jn.1997.77.3.1171.
7
Preferential representation of instructed target location versus limb trajectory in dorsal premotor area.
J Neurophysiol. 1997 Mar;77(3):1195-212. doi: 10.1152/jn.1997.77.3.1195.
8
Rapid changes in throughput from single motor cortex neurons to muscle activity.
Science. 2007 Dec 21;318(5858):1934-7. doi: 10.1126/science.1149774.
9
Nonuniform distribution of reach-related and torque-related activity in upper arm muscles and neurons of primary motor cortex.
J Neurophysiol. 2006 Dec;96(6):3220-30. doi: 10.1152/jn.00110.2006. Epub 2006 Sep 27.
10
Primary motor cortical neurons encode functional muscle synergies.
Exp Brain Res. 2002 Sep;146(2):233-43. doi: 10.1007/s00221-002-1166-x. Epub 2002 Jul 25.

引用本文的文献

2
A neural implementation model of feedback-based motor learning.
Nat Commun. 2025 Feb 20;16(1):1805. doi: 10.1038/s41467-024-54738-5.
3
Future movement plans interact in sequential arm movements.
Elife. 2024 Sep 2;13:RP94485. doi: 10.7554/eLife.94485.
4
A posture subspace in primary motor cortex.
bioRxiv. 2024 Aug 12:2024.08.12.607361. doi: 10.1101/2024.08.12.607361.
7
Neural Correlates of Online Action Preparation.
J Neurosci. 2024 May 29;44(22):e1880232024. doi: 10.1523/JNEUROSCI.1880-23.2024.
9
Myomatrix arrays for high-definition muscle recording.
Elife. 2023 Dec 19;12:RP88551. doi: 10.7554/eLife.88551.
10
The nervous system tunes sensorimotor gains when reaching in variable mechanical environments.
iScience. 2023 Apr 27;26(6):106756. doi: 10.1016/j.isci.2023.106756. eCollection 2023 Jun 16.

本文引用的文献

1
Cortical activity in the null space: permitting preparation without movement.
Nat Neurosci. 2014 Mar;17(3):440-8. doi: 10.1038/nn.3643. Epub 2014 Feb 2.
2
Rapid online selection between multiple motor plans.
J Neurosci. 2014 Jan 29;34(5):1769-80. doi: 10.1523/JNEUROSCI.3063-13.2014.
3
Cortical control of arm movements: a dynamical systems perspective.
Annu Rev Neurosci. 2013 Jul 8;36:337-59. doi: 10.1146/annurev-neuro-062111-150509. Epub 2013 May 29.
5
Rapid feedback corrections during a bimanual postural task.
J Neurophysiol. 2013 Jan;109(1):147-61. doi: 10.1152/jn.00669.2011. Epub 2012 Oct 10.
6
The computational and neural basis of voluntary motor control and planning.
Trends Cogn Sci. 2012 Nov;16(11):541-9. doi: 10.1016/j.tics.2012.09.008. Epub 2012 Sep 29.
7
Neural population dynamics during reaching.
Nature. 2012 Jul 5;487(7405):51-6. doi: 10.1038/nature11129.
8
Optimal feedback control and the long-latency stretch response.
Exp Brain Res. 2012 May;218(3):341-59. doi: 10.1007/s00221-012-3041-8. Epub 2012 Feb 28.
9
Sensing with the motor cortex.
Neuron. 2011 Nov 3;72(3):477-87. doi: 10.1016/j.neuron.2011.10.020.
10
Task-dependent coordination of rapid bimanual motor responses.
J Neurophysiol. 2012 Feb;107(3):890-901. doi: 10.1152/jn.00787.2011. Epub 2011 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验