Suppr超能文献

长潜伏期对食指机械刺激的反应具有脊髓成分。

Long-latency Responses to a Mechanical Perturbation of the Index Finger Have a Spinal Component.

机构信息

Institute of Neuroscience, Newcastle University, Newcastle, NE2 4HH, United Kingdom

Institute of Neuroscience, Newcastle University, Newcastle, NE2 4HH, United Kingdom.

出版信息

J Neurosci. 2020 May 13;40(20):3933-3948. doi: 10.1523/JNEUROSCI.1901-19.2020. Epub 2020 Apr 3.

Abstract

In an uncertain external environment, the motor system may need to respond rapidly to an unexpected stimulus. Limb displacement causes muscle stretch; the corrective response has multiple activity bursts, which are suggested to originate from different parts of the neuraxis. The earliest response is so fast, it can only be produced by spinal circuits; this is followed by slower components thought to arise from primary motor cortex (M1) and other supraspinal areas. Spinal cord (SC) contributions to the slower components are rarely considered. To address this, we recorded neural activity in M1 and the cervical SC during a visuomotor tracking task, in which 2 female macaque monkeys moved their index finger against a resisting motor to track an on-screen target. Following the behavioral trial, an increase in motor torque rapidly returned the finger to its starting position (lever velocity >200°/s). Many cells responded to this passive mechanical perturbation (M1: 148 of 211 cells, 70%; SC: 67 of 119 cells, 56%). The neural onset latency was faster for SC compared with M1 cells (21.7 ± 11.2 ms vs 25.5 ± 10.7 ms, respectively, mean ± SD). Using spike-triggered averaging, some cells in both regions were identified as likely premotor cells, with monosynaptic connections to motoneurons. Response latencies for these cells were compatible with a contribution to the muscle responses following the perturbation. Comparable fractions of responding neurons in both areas were active up to 100 ms after the perturbation, suggesting that both SC circuits and supraspinal centers could contribute to later response components. Following a limb perturbation, multiple reflexes help to restore limb position. Given conduction delays, the earliest part of these reflexes can only arise from spinal circuits. By contrast, long-latency reflex components are typically assumed to originate from supraspinal centers. We recorded from both spinal and motor cortical cells in monkeys responding to index finger perturbations. Many spinal interneurons, including those identified as projecting to motoneurons, responded to the perturbation; the timing of responses was compatible with a contribution to both short- and long-latency reflexes. We conclude that spinal circuits also contribute to long-latency reflexes in distal and forearm muscles, alongside supraspinal regions, such as the motor cortex and brainstem.

摘要

在不确定的外部环境中,运动系统可能需要快速响应意外刺激。肢体位移会导致肌肉拉伸;纠正反应有多个活动爆发,据推测这些爆发起源于中枢神经系统的不同部位。最早的反应非常快,只能由脊髓回路产生;随后是较慢的成分,被认为来自初级运动皮层 (M1) 和其他皮质上区域。很少有人考虑脊髓对较慢成分的贡献。为了解决这个问题,我们在视动跟踪任务中记录了 M1 和颈段脊髓的神经活动,在这个任务中,两只雌性猕猴用食指抵抗运动来跟踪屏幕上的目标。在行为试验之后,快速增加的运动扭矩将手指迅速返回起始位置(杠杆速度>200°/s)。许多细胞对这种被动机械扰动做出反应(M1:211 个细胞中的 148 个,70%;SC:119 个细胞中的 67 个,56%)。与 M1 细胞相比,SC 细胞的神经起始潜伏期更快(分别为 21.7±11.2ms 和 25.5±10.7ms,平均值±标准差)。使用尖峰触发平均,两个区域中的一些细胞被确定为可能的运动前细胞,与运动神经元有单突触连接。这些细胞的反应潜伏期与扰动后肌肉反应的贡献是一致的。两个区域中对刺激有反应的神经元比例相当,在扰动后 100ms 内都有活性,这表明脊髓回路和皮质上中枢都可以对后期的反应成分做出贡献。在肢体受到扰动后,多个反射有助于恢复肢体位置。鉴于传导延迟,这些反射的最早部分只能由脊髓回路产生。相比之下,长潜伏期反射成分通常被认为源自皮质上中枢。我们在猴子对食指扰动的反应中记录了脊髓和运动皮层细胞。许多脊髓中间神经元,包括那些被识别为投射到运动神经元的中间神经元,对扰动做出反应;反应的时间与短潜伏期和长潜伏期反射的贡献是一致的。我们得出结论,脊髓回路也对远端和前臂肌肉的长潜伏期反射做出贡献,与皮质上区域(如运动皮层和脑干)一起。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e037/7219296/80eec098086f/SN-JNSJ200041F001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验