Suppr超能文献

设计光驱动单分子旋转马达的锥形交叉:从进动到轴向运动。

Designing conical intersections for light-driven single molecule rotary motors: from precessional to axial motion.

机构信息

Institut für Physikalische und Theoretische Chemie, Universität Bonn , Beringstrasse 4, D-53115 Bonn, Germany.

出版信息

J Org Chem. 2014 Apr 18;79(8):3587-600. doi: 10.1021/jo5004289. Epub 2014 Apr 7.

Abstract

In the past, the design of light-driven single molecule rotary motors has been mainly guided by the modification of their ground-state conformational properties. Further progress in this field is thus likely to be achieved through a detailed understanding of light-induced dynamics of the system and the ways of modulating it by introducing chemical modifications. In the present theoretical work, the analysis of model organic chromophores and synthesized rotary motors is used for rationalizing the effect of electron-withdrawing heteroatoms (such as a cationic nitrogen) on the topography and branching plane of mechanistically relevant conical intersections. Such an analysis reveals how the character of rotary motion could be changed from a precessional motion to an axial rotational motion. These concepts are then used to design and build quantum chemical models of three distinct types of Schiff base rotary motors. One of these models, featuring the synthetically viable indanylidenepyrroline framework, has conical intersection structures consistent with an axial rotation not hindered by ground-state conformational barriers. It is expected that this type of motor should be capable of funneling the photon energy into specific rotary modes, thus achieving photoisomerization quantum efficiencies comparable to those seen in visual pigments.

摘要

过去,光驱动的单分子旋转马达的设计主要受到其基态构象性质的修饰的指导。因此,通过详细了解系统的光诱导动力学以及通过引入化学修饰来调节它的方式,该领域可能会取得进一步的进展。在本理论工作中,使用模型有机发色团和合成旋转马达的分析来合理化吸电子杂原子(如阳离子氮)对机械相关锥形交叉点的形貌和分支面的影响。这种分析揭示了旋转运动的性质如何从进动运动变为轴向旋转运动。然后,将这些概念用于设计和构建三种不同类型的席夫碱旋转马达的量子化学模型。其中一个模型具有合成可行的茚满基吡咯啉骨架,其锥形交叉结构与不受基态构象障碍阻碍的轴向旋转一致。预计这种类型的马达应该能够将光子能量引导到特定的旋转模式,从而实现与视觉色素中所见相当的光致异构量子效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验