Pooler Daisy R S, Pierron Robin, Crespi Stefano, Costil Romain, Pfeifer Lukas, Léonard Jérémie, Olivucci Massimo, Feringa Ben L
Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504 F-67034 Strasbourg France
Chem Sci. 2021 Apr 29;12(21):7486-7497. doi: 10.1039/d1sc01105g.
Harvesting energy and converting it into mechanical motion forms the basis for both natural and artificial molecular motors. Overcrowded alkene-based light-driven rotary motors are powered through sequential photochemical and thermal steps. The thermal helix inversion steps are well characterised and can be manipulated through adjustment of the chemical structure, however, the insights into the photochemical isomerisation steps still remain elusive. Here we report a novel oxindole-based molecular motor featuring pronounced electronic push-pull character and a four-fold increase of the photoisomerization quantum yield in comparison to previous motors of its class. A multidisciplinary approach including synthesis, steady-state and transient absorption spectroscopies, and electronic structure modelling was implemented to elucidate the excited state dynamics and rotary mechanism. We conclude that the charge-transfer character of the excited state diminishes the degree of pyramidalisation at the alkene bond during isomerisation, such that the rotational properties of this oxindole-based motor stand in between the precessional motion of fluorene-based molecular motors and the axial motion of biomimetic photoswitches.
收集能量并将其转化为机械运动是天然和人造分子马达的基础。基于烯烃的拥挤光驱动旋转马达通过连续的光化学和热步骤提供动力。热螺旋反转步骤已得到充分表征,并且可以通过调整化学结构进行调控,然而,对光化学异构化步骤的认识仍然难以捉摸。在此,我们报道了一种新型的基于氧化吲哚的分子马达,其具有显著的电子推挽特性,与同类先前的马达相比,光异构化量子产率提高了四倍。我们采用了包括合成、稳态和瞬态吸收光谱以及电子结构建模在内的多学科方法来阐明激发态动力学和旋转机制。我们得出结论,激发态的电荷转移特性降低了异构化过程中烯烃键处的锥体化程度,使得这种基于氧化吲哚的马达的旋转特性介于芴基分子马达的进动运动和仿生光开关的轴向运动之间。