Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China.
ACS Nano. 2014 Apr 22;8(4):3678-89. doi: 10.1021/nn5003375. Epub 2014 Apr 3.
The extremely low permeability of the blood-brain barrier (BBB) poses the greatest impediment in the treatment of central nervous system (CNS) diseases. Recent work indicated that BBB permeability can be up-regulated by activating A2A adenosine receptor (AR), which temporarily increases intercellular spaces between the brain capillary endothelial cells. However, due to transient circulation lifetime of adenosine-based agonists, their capability to enhance brain delivery of drugs, especially macromolecular drugs, is limited. In this work, a series of nanoagonists (NAs) were developed by labeling different copies of A2A AR activating ligands on dendrimers. In vitro transendothelial electrical resistance measurements demonstrated that the NAs increased permeability of the endothelial cell monolayer by compromising the tightness of tight junctions, the key structure that restricts the entry of blood-borne molecules into the brain. In vivo imaging studies indicated the remarkably up-regulated brain uptake of a macromolecular model drug (45 kDa) after intravenous injection of NAs. Autoradiographic imaging showed that the BBB opening time-window can be tuned in a range of 0.5-2.0 h by the NAs labeled with different numbers of AR-activating ligands. By choosing a suitable NA, it is possible to maximize brain drug delivery and minimize the uncontrollable BBB leakage by matching the BBB opening time-window with the pharmacokinetics of a therapeutic agent. The NA-mediated brain drug delivery strategy holds promise for the treatment of CNS diseases with improved therapeutic efficiency and reduced side-effects.
血脑屏障(BBB)的极低通透性是治疗中枢神经系统(CNS)疾病的最大障碍。最近的研究表明,通过激活 A2A 腺苷受体(AR)可以上调 BBB 的通透性,从而暂时增加脑毛细血管内皮细胞之间的细胞间隙。然而,由于基于腺苷的激动剂的循环半衰期短暂,它们增强药物,特别是大分子药物向大脑递送的能力是有限的。在这项工作中,通过在树枝状大分子上标记不同数量的 A2A AR 激活配体,开发了一系列纳米激动剂(NAs)。体外跨内皮电阻测量表明,NAs 通过破坏紧密连接的紧密性来增加内皮细胞单层的通透性,紧密连接是限制血液来源的分子进入大脑的关键结构。体内成像研究表明,静脉注射 NAs 后,大分子模型药物(45 kDa)的脑摄取显著上调。放射自显影成像表明,通过用不同数量的 AR 激活配体标记的 NAs,可以将 BBB 开放的时间窗调节在 0.5-2.0 h 的范围内。通过选择合适的 NA,可以通过将 BBB 开放时间窗与治疗剂的药代动力学相匹配,最大程度地提高脑内药物递送,并最小化不可控的 BBB 渗漏,从而实现这一目标。NA 介导的脑内药物递送策略有望提高治疗效率并降低副作用,用于治疗 CNS 疾病。