Laboratoire Evolution, Génomes et Spéciation, UPR 9034, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, UR 072, 91198, Gif sur Yvette, France; Université Paris-Sud 11, 91405, Orsay, France.
Mol Ecol. 2014 May;23(9):2313-25. doi: 10.1111/mec.12730. Epub 2014 Apr 21.
Current population genetic models fail to cope with genetic differentiation for species with large, contiguous and heterogeneous distribution. We show that in such a case, genetic differentiation can be predicted at equilibrium by circuit theory, where conductance corresponds to abundance in species distribution models (SDMs). Circuit-SDM approach was used for the phylogeographic study of the lepidopteran cereal stemborer Busseola fuscaFüller (Noctuidae) across sub-Saharan Africa. Species abundance was surveyed across its distribution range. SDMs were optimized and selected by cross-validation. Relationship between observed matrices of genetic differentiation between individuals, and between matrices of resistance distance was assessed through Mantel tests and redundancy discriminant analyses (RDAs). A total of 628 individuals from 130 localities in 17 countries were genotyped at seven microsatellite loci. Six population clusters were found based on a Bayesian analysis. The eastern margin of Dahomey gap between East and West Africa was the main factor of genetic differentiation. The SDM projections at present, last interglacial and last glacial maximum periods were used for the estimation of circuit resistance between locations of genotyped individuals. For all periods of time, when using either all individuals or only East African individuals, partial Mantel r and RDA conditioning on geographic distance were found significant. Under future projections (year 2080), partial r and RDA significance were different. From this study, it is concluded that analytical solutions provided by circuit theory are useful for the evolutionary management of populations and for phylogeographic analysis when coalescence times are not accessible by approximate Bayesian simulations.
当前的群体遗传模型无法应对具有大的、连续的和异质分布的物种的遗传分化。我们表明,在这种情况下,通过电路理论可以预测遗传分化,其中电导率对应于物种分布模型(SDM)中的丰度。我们使用电路-SDM 方法对撒哈拉以南非洲的鳞翅目谷物蛀茎夜蛾 Busseola fuscaFüller(夜蛾科)进行了系统地理研究。在其分布范围内对物种丰度进行了调查。通过交叉验证优化和选择 SDM。通过 Mantel 检验和冗余判别分析(RDA)评估了个体之间观察到的遗传分化矩阵之间的关系,以及抗距离矩阵之间的关系。在 17 个国家的 130 个地点共采集了 628 个个体进行了 7 个微卫星基因座的基因型分析。根据贝叶斯分析发现了 6 个人种群聚类。东非和西非之间的达荷美缺口的东部边缘是遗传分化的主要因素。使用当前、最后间冰期和末次冰期最大时期的 SDM 预测值,用于估计基因型个体的位置之间的电路电阻。对于所有时期,无论是使用所有个体还是仅使用东非个体,部分 Mantel r 和 RDA 与地理距离相关都具有显著意义。在未来的预测(2080 年)中,部分 r 和 RDA 的显著性不同。从这项研究中得出的结论是,电路理论提供的分析解对于群体的进化管理和系统地理分析是有用的,因为合并时间无法通过近似贝叶斯模拟获得。