Case Comprehensive Cancer Center and Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
FEBS J. 2014 May;281(10):2410-21. doi: 10.1111/febs.12794. Epub 2014 Apr 11.
Siderophores are best known as small iron-binding molecules that facilitate iron uptake in bacteria and fungi. In our previous study, we demonstrated that eukaryotes also produce siderophore-like molecules via a remarkably conserved biosynthetic pathway. A member of the short-chain dehydrogenase family of reductases, 3-hydroxybutyrate dehydrogenase-2, catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore. Physiologically, depletion of the mammalian siderophore by inhibiting expression of the 3-hydroxybutyrate dehydrogenase-2 gene (Bdh2) results in abnormal accumulation of intracellular iron, increased oxidative stress, and mitochondrial iron deficiency. Thus, the mammalian siderophore is an important regulator of cellular iron homeostasis. The cellular iron storage protein ferritin also regulates iron metabolism and protects cells from oxidative stress. Depletion of ferritin results in intracellular iron accumulation, predisposes to oxidative stress, and confers a growth advantage to cells. We therefore hypothesize that the siderophore and ferritin coregulate cellular iron metabolism/homeostasis in eukaryotes. We tested this prediction by depleting both the siderophore and ferritin. This resulted in a marked accumulation of cellular iron, and caused increased sensitivity to oxidants. Interestingly, cells lacking both the siderophore and ferritin proliferated at a higher rate than cells lacking either of these components alone. Taken together, our findings suggest that the siderophore and ferritin synergistically regulate cellular iron levels.
铁载体是众所周知的小分子铁结合分子,有助于细菌和真菌吸收铁。在我们之前的研究中,我们证明了真核生物也通过一种非常保守的生物合成途径产生类似铁载体的分子。一种属于还原酶的短链脱氢酶家族的 3-羟基丁酸脱氢酶-2,催化了哺乳动物铁载体生物发生的限速步骤。在生理上,通过抑制 3-羟基丁酸脱氢酶-2 基因(Bdh2)的表达来耗尽哺乳动物的铁载体,会导致细胞内铁的异常积累、氧化应激增加和线粒体铁缺乏。因此,哺乳动物的铁载体是细胞铁稳态的重要调节剂。细胞铁储存蛋白 ferritin 也调节铁代谢并保护细胞免受氧化应激。ferritin 的耗竭会导致细胞内铁的积累,易发生氧化应激,并赋予细胞生长优势。因此,我们假设铁载体和 ferritin 在真核生物中共同调节细胞铁代谢/稳态。我们通过耗尽铁载体和 ferritin 来检验这一预测。这导致细胞内铁的明显积累,并导致对氧化剂的敏感性增加。有趣的是,与单独缺乏这两种成分的细胞相比,缺乏铁载体和 ferritin 的细胞的增殖速度更高。总之,我们的发现表明铁载体和 ferritin 协同调节细胞内铁水平。