Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205.
Toxicol Sci. 2014 Jun;139(2):293-300. doi: 10.1093/toxsci/kfu056. Epub 2014 Mar 27.
Mice are resistant to aflatoxin hepatotoxicity, primarily due to high expression of glutathione S-transferases (GSTs), and in particular the GSTA3 subunit. Nuclear factor erythroid 2 related factor 2 (Nrf2) signaling, which controls a broad-based cytoprotective response, was activated either genetically or pharmacologically in an attempt to rescue GSTA3 knockout mice from aflatoxin genotoxicity. Genetic activation of Nrf2 signaling was attained in a GSTA3: hepatocyte-specific Keap1 double knockout (DKO) mouse whereas pharmacologic activation of Nrf2 was achieved through pretreatment of mice with the triterpenoid 1-[2-cyano-3-,12-dioxoleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im) prior to aflatoxin B1 exposure. Following oral treatment with aflatoxin, urine was collected from mice for 24 h and hepatic and urinary aflatoxin metabolites then quantified using isotope dilution-mass spectrometry. Although Nrf2 was successfully activated genetically and pharmacologically, neither means affected the response of GSTA3 knockout mice to chemical insult with aflatoxin. Hepatic aflatoxin B1-N(7)-guanine levels were elevated 120-fold in GSTA3 knockout mice compared with wild-type and levels were not attenuated by the interventions. This lack of effect was mirrored in the urinary excretion of aflatoxin B1-N(7)-guanine. By contrast, urinary excretion of aflatoxin B1-N-acetylcysteine was >200-fold higher in wild-type mice compared with the single GSTA3 knockout or DKO mouse. The inability to rescue GSTA3 knockout mice from aflatoxin genotoxicity through the Nrf2 transcriptional program indicates that Gsta3 is unilaterally responsible for the detoxication of aflatoxin in mice.
老鼠对黄曲霉毒素的肝毒性具有抗性,主要是由于谷胱甘肽 S-转移酶 (GSTs) 的高表达,尤其是 GSTA3 亚基。核因子红细胞 2 相关因子 2 (Nrf2) 信号通路控制着广泛的细胞保护反应,通过基因或药理学手段激活该信号通路,试图使 GSTA3 基因敲除小鼠免受黄曲霉毒素的遗传毒性。在 GSTA3:肝细胞特异性 Keap1 双敲除 (DKO) 小鼠中实现了 Nrf2 信号通路的基因激活,而通过在用黄曲霉毒素 B1 暴露之前用三萜 1-[2-氰基-3,12-二氧代-1,9(11)-二烯-28-酰基]咪唑 (CDDO-Im) 预处理小鼠实现了 Nrf2 的药理学激活。在用黄曲霉毒素进行口服治疗后,收集小鼠 24 小时的尿液,然后使用同位素稀释-质谱法定量测定肝和尿中黄曲霉毒素代谢物。尽管成功地通过基因和药理学手段激活了 Nrf2,但这两种方法都没有影响 GSTA3 基因敲除小鼠对黄曲霉毒素化学刺激的反应。与野生型相比,GSTA3 基因敲除小鼠的肝黄曲霉毒素 B1-N(7)-鸟嘌呤水平升高了 120 倍,并且这些干预措施并没有降低这些水平。这一缺乏效果在黄曲霉毒素 B1-N(7)-鸟嘌呤的尿液排泄中得到了反映。相比之下,与单个 GSTA3 基因敲除或 DKO 小鼠相比,野生型小鼠的黄曲霉毒素 B1-N-乙酰半胱氨酸的尿液排泄量高出 200 倍以上。通过 Nrf2 转录程序未能使 GSTA3 基因敲除小鼠免受黄曲霉毒素的遗传毒性表明,Gsta3 单方面负责小鼠体内黄曲霉毒素的解毒。