van Iersel Martijn P, Sokolović Milka, Lenaerts Kaatje, Kutmon Martina, Bouwman Freek G, Lamers Wouter H, Mariman Edwin C M, Evelo Chris T
General Bioinformatics, Reading, United Kingdom.
Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, The Netherlands, and European Food Information Council, Brussels, Belgium.
J Integr Bioinform. 2014 Mar 28;11(1):235. doi: 10.2390/biecoll-jib-2014-235.
Our understanding of complex biological processes can be enhanced by combining different kinds of high-throughput experimental data, but the use of incompatible identifiers makes data integration a challenge. We aimed to improve methods for integrating and visualizing different types of omics data. To validate these methods, we applied them to two previous studies on starvation in mice, one using proteomics and the other using transcriptomics technology. We extended the PathVisio software with new plugins to link proteins, transcripts and pathways. A low overall correlation between proteome and transcriptome data was detected (Spearman rank correlation: 0.21). At the level of individual genes, correlation was highly variable. Many mRNA/protein pairs, such as fructose biphosphate aldolase B and ATP Synthase, show good correlation. For other pairs, such as ferritin and elongation factor 2, an interesting effect is observed, where mRNA and protein levels change in opposite directions, suggesting they are not primarily regulated at the transcriptional level. We used pathway diagrams to visualize the integrated datasets and found it encouraging that transcriptomics and proteomics data supported each other at the pathway level. Visualization of the integrated dataset on pathways led to new observations on gene-regulation in the response of the gut to starvation. Our methods are generic and can be applied to any multi-omics study. The PathVisio software can be obtained at http://www.pathvisio.org. Supplemental data are available at http://www.bigcat.unimaas.nl/data/jib-supplemental/ , including instructions on reproducing the pathway visualizations of this manuscript.
通过整合不同类型的高通量实验数据,我们对复杂生物过程的理解能够得到增强,但标识符不兼容使得数据整合成为一项挑战。我们旨在改进整合和可视化不同类型组学数据的方法。为了验证这些方法,我们将它们应用于之前两项关于小鼠饥饿的研究,一项使用蛋白质组学,另一项使用转录组学技术。我们用新插件扩展了PathVisio软件,以连接蛋白质、转录本和通路。检测到蛋白质组和转录组数据之间的总体相关性较低(斯皮尔曼等级相关性:0.21)。在单个基因水平上,相关性变化很大。许多mRNA/蛋白质对,如磷酸果糖醛缩酶B和ATP合酶,显示出良好的相关性。对于其他对,如铁蛋白和延伸因子2,观察到一种有趣的效应,即mRNA和蛋白质水平呈相反方向变化,这表明它们主要不是在转录水平上受到调控。我们使用通路图来可视化整合数据集,并且发现在通路水平上转录组学和蛋白质组学数据相互支持,这令人鼓舞。对通路整合数据集的可视化导致了对肠道对饥饿反应中基因调控的新观察。我们的方法具有通用性,可应用于任何多组学研究。PathVisio软件可从http://www.pathvisio.org获取。补充数据可从http://www.bigcat.unimaas.nl/data/jib-supplemental/获取,包括重现本手稿通路可视化的说明。